
Asia/Pacific:

ER Mapper
2 Abbotsford Street,
West Leederville
Western Australia 6007
Telephone:+61 8 9388-2900
Facsimile: +61 8 9388-2901

Europe, Africa and Middle
East:
ER Mapper
MASDAR House
No 1 Reading Road
Eversley
Hants, RG27 0RP, UK
Telephone: +44 (0) 118 973 0780
Facsimile: +44 (0) 118 973 0002

Americas:

ER Mapper
13400 Sabre Springs
Parkway
Suite 150, San Diego
CA 92128, USA
Telephone: +1 858 391-5638
Facsimile: +1 858 391-5649

Software Development Kit
User Reference Guide

7 February 2006
Release 3.3

Revision History

Revision Date Comments

Release 3.3 7 February 2006 Enhancements, threading fixes,
various bug-fixes, autoconf build
support and licensing changes.

Release 3.1 22 April 2005 Enhancements and maintenance

Release 3.0 September 2004 JPEG 2000 Added

Release 2.47 15 September 2003 Windows CE support

Release 2.46 25 March 2002 Maintenance release

Release 2.45 16 November 2001 GDT database support

Release 2.4 9 July 2001 Map server integration

Release 2.31 18 May 2001 Maintenance release

Release 2.3 10 May 2001 Maintenance release

Release 2.2 22 September 2000 NCSRenderer added

Release 2.1 22 May 2000 Second release

Copyright information

Service and trademarks
All brand or product names mentioned in this guide are trademarks or registered trademarks or
service marks of their respective owners.

IP acknowledgements
Some parts of this SDK are based on 3rd party Open Source libraries and projects. Software
developed using the ECW JPEG 2000 SDK may be required to acknowledge these 3rd party
libraries where appropriate. Appropriate references are cited below.

1) TinyXML - XML parsing for GML geolocation metadata
TinyXML is distributed under the zlib license.
www.sourceforge.net/projects/tinyxml

2) LittleCMS - ICC profile management library
LittleCMS is distributed under the MIT license:
The MIT license
Copyright (c) 1998-2003 Marti Maria
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Chttp://www.littlecms.com

3) J2000
The T1 and MQ code in the ECW JPEG 2000 SDK is based in part on highly modified versions of
sections from the J2000 library

From the J2000 website:
“The J2000 codec was written in an effort to produce the cleanest and simplest implementation
possible of the JPEG-2000 standard. We have put a particular emphasis on good architecture
design and code simplicity, while at the same time providing an implementation as complete and
efficient as possible. The source code for the codec is freely available for anyone to study or even
for use in commercial programs. We hope that our open development process and our focus on
clean, straightforward code will help make the J2000 codec become a reference implementation of
the JPEG-2000 standard.”
J2000 Copyright (c) 2001-2002, David Janssens
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
`AS IS’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
http://www.j2000.org

4) QMake
Qmake from Trolltech (http://www.trolltech.com)

5) GNU autotools
GNU autotools (autoconf, automake and libtool) for build support.

Table of Contents
Revision History 2
Copyright information 3
Table of Contents 5

1 Introduction 7
Intended audience 7
What’s new in this version 8
Upgrading 10
Licensing 10
System requirements 12
Installation 13

2 FAQ 18

3 About image compression 25
Lossless or lossy compression 26
Wavelet based encoding 26
ECW compression 27
JPEG 2000 compression 28

4 Building from Source 31
Building the source 31
General notes 38

5 Development 41
ECW JPEG 2000 SDK contents 41
PC library and include files 42
Project settings - Visual C++ 42
How imagery is accessed 42
Blocking reads versus the refresh callback interface 45
Canceling reads 48
Multiple image views and unlimited image size 49
Error handling 49
Memory management 49
Coordinate information 50
Transparent proxying 51
Delivering your application 51
Creating compressed images 51

6 Examples 57
Compression examples 57
Decompression examples 64

7 API reference 71
C API: decompression functions 72
Decompression: Related Data Structures 81
C API: compression functions 86
Compression: developer defined functions 89
Compression: related data structures 91
Information from the application developer 92
C API: Utility Functions 94
C++ API 98
Class Reference: CNCSFile 99
Class Reference: CNCSRenderer 119
Class Reference: CNCSError 126

8 Geocoding information 129
Datum 129
Projection 129
Units 130
Registration point 131
Geodetic Transform Database 131
GDT file formats 132
How the ECW JPEG 2000 SDK reads geocoding information
132

9 USA Map Projections 139

10 Directory structure and files 143
Subdirectories and files 143

11 ECW JPEG 2000 SDK License Agreements 149

1

Introduction
This ECW JPEG 2000 Software Development Kit (SDK) may be used to add large image
support to applications. It provides compression and use of very large images in the industry
standard ECW compressed image format and the ISO standard JPEG 2000 format.

The ECW JPEG 2000 SDK enables software developers working with C or C++ to add image
compression and decompression support for the ECW and JPEG 2000 file formats to their own
GIS, CAD or imaging applications. The libraries are small and can be packaged as shared objects
to install on a user system or in an application's executable code directory. The SDK libraries
have a small, clean interface with only a few function calls. Subsampling and selective views of
imagery are handled automatically. You can use the SDK library with a simple read-region call,
or a progressive-update call (this is advantageous for imagery coming from an Image Web
Server). You can include ECW or JPEG 2000 compressed images of any size (including terabytes
or larger) within your application. The images can be from a local source (e.g. a hard disk,
network server, CD- or DVD-ROM). The images can also be from a remote source as delivered
from an Image Web Server. The source is functionally hidden from your application, which needs
only to open views into the image. The ECW JPEG 2000 SDK manages the entire image access
and decompression process for you.

Intended audience
As with the ECW JPEG 2000 SDK itself, this guide is intended for programmers with a good
understanding of C and C++ programming concepts and techniques. This guide describes specific
considerations and techniques for implementing the compression and decompression features of
the ECW JPEG 2000 SDK in application programming.
ECW JPEG 2000 SDK - 7

Chapter 1 Introduction ● What’s new in this version
What’s new in this version
• Support for building on *NIX platforms using GNU autotools.

• Fixes to threading issues on *NIX platforms.

• Fix to a decoding problem on big-endian architectures.

• Sample code with build files added to the distribution.

• Fix for a very minor bug in lossless compression.

• New Public Use License Agreement (“Server Software” restriction removed,
redistribution restriction removed, changes to ECW format restriction removed).

JPEG 2000 support in this new version includes fully compliant compression and decompression.
Furthermore, JPEG 2000 support includes the NITF (National Imagery Transmission Format)
preferred encoding specifications, as well as GML and GeoTIFF UUID box georeferencing.

Also included with Version 3.xx of the ECW JPEG 2000 SDK is the full source code for the
SDK, which can be built on a range of Windows and UNIX-based platforms.

JPEG 2000 support
ER Mapper is the only vendor in the Geospatial industry to commit to developing its own JPEG
2000 implementation in order to provide superior solutions for multi-terabyte JPEG 2000 images.

• Compliance class 2 JPEG 2000 decompression.

• Tested to support terabyte+ JPEG 2000 image compression.

• Support for NITF standards (see below).

• Input and output of geographical metadata in three formats: embedded GML, embedded
GeoTIFF UUID box, and six-value world file.

• Application development is simplified with both ECW and JPEG 2000 in the same library
with the same easy-to-use API.

• Streaming JPEG 2000 via ECWP protocol adds lightening fast access to large image
datasets.

• Optimum defaults provide quick set-up.

• Optional advanced compression parameters can be configured.

• Lossless and lossy compression.

NITF support
The ECW JPEG 2000 SDK caters for military-grade applications by complying with NITF JPEG
2000 standards. With the ECW JPEG 2000 you can compress to NITF/NSIF BIIF NPJE, EPJE
compliant codestreams. Use ER Mapper to compress to NITF 2.1 files with embedded JPEG
2000 codestreams.
8 - ECW JPEG 2000 SDK

Chapter 1 Introduction ● Compressed multi-terabyte images
Compressed multi-terabyte images
The ECW format has always supported very large images. The latest version has been tuned to
significantly reduce memory usage when compressing multi-TB images. This version has been
tested out to compression of 10TB (10,000GB) images. The ECW file format remains unchanged.
JPEG 2000 compressions of 1,000 GB+ are supported.

ECWP streaming protocol
Enhancements have been made to the image streaming ECWP protocol to improve speed. ECWP
offers the fastest possible access to large ECW and JPEG 2000 images.

No-hassle licenses
You can now choose from three different simple license styles for the SDK:

• Free use unlimited decompression/500MB compression free license for use in any
application (including commercial or GPL style use). There is no charge for this license.

• Public use (including unlimited compression) for free GPL style applications. There is no
charge for this license.

• Commercial license (including unlimited compression) for commercial applications. Single
up-front fee, and no royalty or per-GB charges.

Open Source
This release includes the full source code for increased flexibility when applying ECW JPEG
2000 technology. Pre-compiled binaries are available for Windows.
ECW JPEG 2000 SDK - 9

Chapter 1 Introduction ● Upgrading
Upgrading
If you are already using Version 2.x of the ECW SDK, you need do nothing extra to upgrade.
Simply install the ECW JPEG 2000 SDK normally. Libraries from previous versions of the
ECW SDK have the same names as before. Any libpath settings should remain the same.
Otherwise, simply set your libpaths to the location of the new SDK and rebuild your application.

Licensing
ER Mapping provides three types of licenses for the ECW JPEG 2000 SDK. You can choose the
type of license that best suits your requirements for this product. Consider the following criteria to
select your license:

• Are you building a commercial or non-commercial application?

• What will be the licensing terms of your application?

• What sizes and quantities of images will you support with compression?

License types
The three types of licenses available for the ECW JPEG 2000 SDK are as follows:

• ECW JPEG 2000 SDK Free Use License Agreement - This license governs the free use of
the ECW JPEG 2000 SDK with unlimited decompression and limited compression (Less
than 500MB).

• ECW JPEG 2000 SDK Public Use License Agreement - This license governs the use of the
ECW SDK with unlimited decompression and unlimited compression for applications
licensed under a GNU General Public style license.

• ECW JPEG 2000 SDK Commercial Use License Agreement - This license governs the use
of the ECW JPEG 2000 SDK with unlimited decompression and unlimited compression
for commercial applications.

Free use license
The intent of this license is to allow unlimited decompression and limited compression (500MB
per image) of ECW images within free or commercial applications. You can choose this Free Use
License if your image compression requirements do not exceed 500MB in total size.
10 - ECW JPEG 2000 SDK

Chapter 1 Introduction ● Public use license
Public use license
This license applies to the use of the ECW JPEG 2000 SDK with unlimited decompression and
unlimited compression for applications licensed under a GNU General Public License (GPL) style
license. This license grants a freedom to share and change the ECW JPEG 2000 SDK software
within the terms of an Open Source model. Choose this license only if your application and source
code will be released under Open Source terms such as GPL.

Commercial use license
This license establishes and governs commercial rights to the use of the ECW JPEG 2000 SDK
with unlimited decompression and unlimited compression. The Commercial Use License will
probably apply to your application if it does not meet the criteria of the other license types. Fees
are payable for Commercial Use Licenses.

The following table shows the license types and their respective intents.

Where to get detailed licensing information
The full text of the EULAs at the time this manual was printed is available as an appendix (see
Appendix A - ECW JPEG 2000 SDK Licensing Agreements). You should be sure that any
application you write using the ECW JPEG 2000 SDK conforms to the licensing agreement you
have chosen, whether it be the free, public or commercial agreement.

The EULAs are also included with binary and source distributions of the ECW JPEG 2000 SDK
as the text file license.txt.

From time to time, and usually when a new version of the ECW JPEG 2000 SDK is released, the
licensing agreements are reviewed and may be changed. You can find an up to date version of the
EULAs as they apply to the currently available SDK at the following URL:

http://www.ermapper.com/downloads/download_view.aspx?PRODUCT_VERSION_ID=207

Contact ER Mapper if you need further clarification of the licensing agreements or would like to
negotiate the use of the ECW JPEG 2000 SDK in your application under different conditions.

License Type Intended Scope Applicability
Free Use Commercial Public Software

Unlimited decompression
500MB image compression limit

Any application requiring no more than
500MB image size compression
support.

Public Use Public Open Source software
Unlimited decompression
Unlimited compression

Any application to be released under a
GPL-style License

Commercial Use Commercial software
Unlimited decompression
Unlimited compression

Any commercial application requiring
compression of images greater than
500MB in size
ECW JPEG 2000 SDK - 11

Chapter 1 Introduction ● System requirements
System requirements

Operating system
The ECW JPEG 2000 SDK can be obtained with pre-built binaries that require one of the
following operating systems:

• Windows 95, 98SE and ME.

• Windows NT4, 2000, XP and 2003 Server.

All available operating system updates should be applied to ensure correct operation of the SDK
libraries.

Platforms
• Sun SPARC

• Intel Pentium/x86

• PowerPC

• AMD x86

• some 64-bit architectures

There is a separate source code distribution (available from http://www.ermapper.com) including
makefiles for Solaris 8 and 9 as well as Microsoft Visual C++ workspace and project files.
Modification of the build files will be required to build the SDK on any other operating system.

Applications
The ECW JPEG 2000 SDK compression library has been specifically designed for applications
created with:

• Microsoft Visual C++ Version 6.0, 7.1 or later (for Windows);

• Embedded Visual C++ Version 3.0 (for Windows CE);

• Metroworks Code Warrior Pro Version 6.0 (for Macintosh); and

• GCC/C++ v.3.03 or later (for Solaris only).

No support is provided for other compilers or IDEs.
12 - ECW JPEG 2000 SDK

Chapter 1 Introduction ● Installation
Installation
Complete the following procedure to install the ECW JPEG 2000 SDK onto your workstation.

1 Double click the ECW JPEG 2000 SDK Installer icon to start the installation
process. The SDK installer icon is shown below.

The following dialog will appear as a caution.

2 Quit any applications running besides the ECW JPEG 2000 Installer. Click No only
if you wish to quit the installation. Click Yes to start the installation.

The Installer may require a few moments to initialize. During this interval, the
following screens will appear:
ECW JPEG 2000 SDK - 13

Chapter 1 Introduction ● Installation
Next you will see this Welcome dialog. Read the information carefully.

3 Click Next to proceed with the installation. Click Cancel only if you wish to abort the
installation.

4 The Software License Agreement dialog presents the terms and conditions under which
the ECW JPEG 2000 SDK is licensed to you.

You must accept these terms and conditions to install or use the ECW JPEG 2000
SDK. The Software License dialog is shown here.

5 Click Yes to accept the licensing terms and continue with your installation. To decline
the licensing terms and abort the installation, click No.
14 - ECW JPEG 2000 SDK

Chapter 1 Introduction ● Installation
Choose a destination for your ECW JPEG 2000 SDK files to be installed. The
Installer will display a dialog with the default location indicated.

6 You can accept this default, or click the Browse button and navigate to a preferred or
new directory. The Choose Destination Location dialog is shown here.

7 Click Next to continue your installation. Click Cancel only if you wish to abort your
installation.

8 Before installation begins, study the Start Copying Files dialog. Assure yourself that
the settings you see are correct. Press the Back button to change the destination
directory. An example of the Start Copying Files dialog is shown below.
ECW JPEG 2000 SDK - 15

Chapter 1 Introduction ● Installation
This example may differ from the dialog you see in the Installer, according to your
specific settings.

9 Click Next to continue your installation. Click Cancel only if you wish to abort your
installation. During installation, the Installer will display a screen indicating progress
and actions being performed.
16 - ECW JPEG 2000 SDK

Chapter 1 Introduction ● Installation
10 When the installation is completed, you will see this Setup Complete dialog shown
below.

11 Tick View Readme file to view a readme file with important product updates
immediately after your installation is complete. Click Finish to close the Installer.

Note: Included with Version 3.xx of the ECW JPEG 2000 SDK is the full source code
for the SDK. The latest source code is available for download from the ER Mapper
website at www.ermapper.com as a single libecwj2-3.x.zip file. Simply download
and unzip the file to a destination on your workstation. After unzipping the files
open the libecwj2-3.x directory and consult the Build.txt and License.txt files for
further information on the source code release.
ECW JPEG 2000 SDK - 17

2

FAQ
What is the ECW JPEG 2000 SDK?
The ECW JPEG 2000 SDK version 3.3 (SDK) is an enhancement to its predecessor, the ECW
SDK (versions 1.0 to 2.x), which provides fast, reliable manipulation of imagery stored in ER
Mapper’s widespread and ground-breaking Enhanced Compressed Wavelet (ECW) file format.

The ECW JPEG 2000 SDK incorporates compression and decompression support for images
encoded using the ISO JPEG 2000 standard, in addition to continuing to provide the ECW
functionality of our previous SDKs.

Support for JPEG 2000 is transparent, meaning that most clients of ER Mapper who previously
developed applications using the ECW SDK will be able to add support for JPEG 2000 to them
simply by relinking with the ECW JPEG 2000 SDK. The ECW JPEG 2000 SDK simplifies the
development effort by encapsulating ECW and JPEG 2000 functions in one easy-to-use API.
Utility functions allow clients to obtain JPEG 2000 and ECW specific file information.

What is JPEG 2000?
JPEG 2000 is an ISO standard (ISO/IEC 15444) for compressing, storing and transmitting images
of all types. It uses wavelet compression technology to achieve scalable compression ranging from
lossless to arbitrarily lossy, while retaining unprecedented decompressed image quality.

It is anticipated that the JPEG 2000 standard will gradually replace JPEG as the de facto Internet
image standard. Its many advantages will see it widely used across a range of fields and
applications.

Information about the JPEG 2000 standard can be found at: http://www.jpeg.org/

Who is ER Mapper?
Founded by Stuart Nixon in 1989, ER Mapper (Earth Resource Mapping) is committed to making
image processing easier so that professionals at all skill levels and disciplines can effectively
utilize the power of geoprocessing and remote sensing technologies. Since our beginnings,
ECW JPEG 2000 SDK - 18

Chapter 2 FAQ ●
superior products coupled with a responsiveness to customers that is unmatched in the industry
have supported our steady growth, which includes the expansion of our reseller network to 300
companies.

ER Mapper is totally committed to open software standards for imagery.

ER Mapper is used by professionals in a wide range of industries, including airphoto data, state
and local government, environmental science, telecommunications, defense, agriculture, forestry,
oil and gas, and mining. Anyone who manages the earth’s natural resources or the urban
infrastructure has an application.

ER Mapper’s future direction will continue to be dictated by the needs of the industries that
depend on innovative and efficient image processing products.

ER Mapper has regional offices in Perth, Australia; London, UK; and San Diego, California in the
United States, The Asia Pacific Region in Perth covers Asia and the far East. Our office in London
supports the European, African and Middle Eastern regions. Lastly, the Americas region, based in
San Diego, California, includes North and South America.

Where can I get the ECW JPEG 2000 SDK?
The ECW JPEG 2000 SDK is available for download in the Downloads section at the ER Mapper
official web site: http://www.ermapper.com/

Further releases are planned which will add additional functionality.

What does the ECW JPEG 2000 SDK cost?
For most purposes, absolutely nothing! The ECW JPEG 2000 SDK is available under three simple
licenses, two of which cost nothing, and the third of which attracts a one-off fee for unlimited
commercial use.

How can I license the ECW JPEG 2000 SDK?
The SDK is available under three simple licenses, two of which are completely free.

The first is a free use license, providing unlimited read/500MB-per-image compression for ECW
and JPEG 2000 in any application, including commercial applications.

The second license is a GPL-style license supporting reading and writing of ECW and JPEG 2000
files of unlimited size in any GPL application.

The third license is a commercial license attracting a once-off fee and no royalties for commercial
applications needing unlimited compression for ECW and JPEG 2000.

What is ECW?
ECW is an acronym for Enhanced Compressed Wavelet, a popular standard for compressing and
using very large images.
ECW JPEG 2000 SDK - 19

Chapter 2 FAQ ●
What is ECWP?
ECWP is an acronym for Enhanced Compression Wavelet Protocol. It is the protocol used to
transmit images compressed with ECW over networks such as the Internet. ECWP is fully
supported by Image Web Server.

What is ECWPS?
ECWPS is the version of ECWP that includes security. ECWPS enables private and secure
encrypted streaming of image data over public networks such as the Internet. ECWPS is a feature
included with Image Web Server. It is also available for ArcGIS through the ECW Plug-in.

Must I support ECWP in my application?
Yes. The licensing terms for all versions of the ECW JPEG 2000 SDK require support for ECWP
be included in all applications incorporating the SDK libraries.

What is GML?
The Geography Markup Language is an XML grammar and schema for recording and transferring
geographic data. GML has been developed by the OpenGIS Consortium in consultation with
members and the International Standards Organisation.

Geospatial information is available as OGC GML in an XML header box as specified in Part 2 of
the ISO JPEG 2000 Standard (ISO/IEC 15444-2).

Does the ECW JPEG 2000 SDK support GeoJP2?
The GeoJP2 standard for embedding geospatial information in “.jp2” files, kick-started by the
now defunct Mapping Science Inc., inserts a degenerate GeoTIFF file in a UUID box in the JPEG
2000 file, providing coordinate system information and a mapping between pixel coordinates and
georeferenced coordinates. Although it is a somewhat inelegant solution to the problem of
embedding geographic metadata in a JPEG 2000 file, it is supported by the ECW JPEG 2000
SDK.

ER Mapper also supports the inclusion of georeferencing information as Open GIS Consortium
Geography Markup Language (OGC GML), continuing our commitment to open standards and
interoperability. Developers using the ECW JPEG 2000 SDK can select which forms of
geographical metadata are processed on input and output to and from a JPEG 2000 image file.

What is GeoTIFF?
GeoTIFF is a version of the popular Tagged Image File Format (TIFF) that includes
georeferencing. GeoTIFF files are standard TIFF 6.0 files, with georeferencing encoded in several
reserved TIFF tags. The ECW JPEG 2000 SDK fully supports GeoTIFF metadata in compressed
and decompressed image files.
20 - ECW JPEG 2000 SDK

Chapter 2 FAQ ●
What is NITF?
The National Imagery Transmission Format Standard (NITF) is a set of combined government
standards for the formatting, storage and transmission of digital imagery. Originally developed for
United States military and government agencies, the NITF has been accepted through
Standardization Agreements by NATO and other international defense organizations.

What is streaming imagery?
Streaming imagery delivers images over a network connection as a stream of information, so that
one part of the image can be manipulated or viewed as other parts continue to be received.

Does Image Web Server stream JPEG 2000 images?
Yes.

How large an image can I compress with the ECW JPEG 2000 SDK?
If your application is licensed under the Public or Commercial Use License Agreements, you can
compress files of any size. The ECW JPEG 2000 SDK has been tested with files over 10TB
(10,000GB) in size. Under the Free Use License Agreement, you are only permitted to compress
files up to 500MB in size, but you can decompress files of any size.

Can I use the ECW JPEG 2000 SDK in 64-bit applications?
Yes. The ECW JPEG 2000 SDK source is ready for the next generation of 64-bit processors and
operating systems.

How much can the ECW JPEG 2000 SDK compress a file?
The ECW JPEG 2000 SDK can achieve compression rates of up to 95%. Your actual results will
vary depending upon the type of compression you use, your settings, and the original file.

Which file formats are encoded by the ECW JPEG 2000 SDK?
The ECW JPEG 2000 SDK will compress to the ECW and JP2 file formats. Compression of
“.ecw” files operates as in previous versions of the SDK. The “.jp2” files compressed by the SDK
will actually be backwards-compatible jpx files from Part 2 of the ISO JPEG 2000 Standard,
allowing ER Mapper to embed georeferencing information in header boxes in the files to support
GIS applications. A JPEG 2000 decoder that complies with Part 1 of the standard will be able to
decompress these files by default since it will ignore these header boxes.

What support for bi-level imagery is provided in the ECW JPEG 2000 SDK?
Bi-level images are an important subset of the images that can conform to the JPEG 2000
specification. The standard supports bit-depths from 1-31 allowing a maximum level of flexibility.
The ECW JPEG 2000 SDK is able to decode compressed bi-level “.jp2” files (with a bit-depth of
1) since it is fully compliant with the standard. Also, 1-bit “.jp2” compression is supported by the
SDK, and users are still able to compress bi-level data to grayscale ECW images.
ECW JPEG 2000 SDK - 21

Chapter 2 FAQ ●
What is lossless compression?
Lossless compression provides a compressed image that can uncompress to an identical copy of
the original image. This perfect reconstruction is the advantage of lossless compression. The
disadvantage of lossless compression is a ratio limit of approximately 2:1 compressed file size.

What is lossy compression?
Lossy compression provides a compressed image that can uncompress to an approximate copy of
the original image.

Lossy compression sacrifices some data fidelity, in order to achieve much higher compression
rates than those available through lossless compression. These higher compression ratios are the
advantages of lossy compression.

Why do some JPEG 2000 files seem to decompress very slowly?
JPEG 2000 files are instances of a large and highly customizable specification. The JPEG 2000
standard supports many different compression formats, some of which are more optimized
towards quick loading than others. As a consequence the speed performance of the ECW JPEG
2000 SDK can be somewhat variable across the range of all input files. The ECW JPEG 2000
SDK will decompress JP2 files at rates comparable to or better than those achieved by other
decoder implementations.

What is wavelet compression?
The most effective form of compression today is wavelet based image encoding. Wavelet
compression analyzes an uncompressed image recursively. This analysis produces a series of
sequentially higher resolution images, each augmenting the information in the lower resolution
images. Wavelet compression is very effective at retaining data accuracy within

highly compressed files. Unlike JPEG, which uses a block-based Discrete Cosine Transformation
(DCT) on blocks across the image, modern wavelet compression techniques enable compressions
of 20:1 or greater without visible degradation of the original image. Wavelet compression can also
be used to generate lossless compressed imagery, at ratios of around 2:1.

What is a projection?
A map projection is a mathematical function used to plot a point from an ellipsoid, on a plane such
as a sheet of paper. Projections attempt to replicate characteristics of the surface geometry at the
given point. Dozens of different projections are available.

How does the SDK handle decompression functions on the alpha channel?
Various BGRA, RGBA etc. decompression functions always return zero values for the alpha-
channel since ECW does not 'understand' alpha values. It should also be noted that multiband
format is the correct format in which to compress actual RGBA information, which can then be
retrieved using the BIL reading functions. This is important to note as the SDK will actually return
alpha values from compressed JPEG 2000 files if applicable.
22 - ECW JPEG 2000 SDK

Chapter 2 FAQ ●
How does the SDK handle different sample sizes and component bit depths?
If the user specifies three bands, cell type NCSCT_UINT32, and bit depth 17 in each of the
NCSFileBandInfo structs in pBands, does this mean the compression process will read data in 32-
bit chunks for each?

The data type read (i.e. compression “input” buffer) is determined by the NCSEcwCellType
specified in the SetFileInfo() call. Out of this, the compressor assumes the data is within the
valid range. Currently it does clip IEEE4 buffers (for compatibility with the C API) to the
specified bit depth, but for performance reasons no other types.

It is currently up to the application to guarantee the bit depth specified is sufficient to handle
whatever is passed into the buffer, and that the buffer is big enough to hold it (i.e., INT16 in a
UINT8 buffer won't work).

What happens if the bit depth specified is greater than the maximum bit depth for the cell type e.g.
you put a value 8 in nBits but your cell type is NCSCT_UINT8?

It will most likely work, however by specifying more bits than are really there, you are just
confusing downstream applications decompressing the image - i.e. most will assume 16 bit will be
16 bits of data, and rescale for display as appropriate (kdu_show does this - ER Mapper however
calculates a histogram and creates a default transform based on that).

How does the SDK handle optimal block sizes?
The SDK now calculates an optimal block size internally instead of allowing the application
developer to change it manually. However the architecture for compression remains the same for
backwards compatibility with old SDK applications.

How does the SDK handle partially georeferenced datasets?
ER Mapper uses a datum and projection pair called WGS84/LOCAL to represent the coordinate
system of datasets that have a geographic registration but no proper coordinate system or
geocoding, so that multiple such datasets can be accurately overlaid (similar to the use of world
files for this purpose).

An ECW file that is listed as in WGS84/LOCAL is processed with vertical values inverted in ER
Mapper as compared to a RAW/RAW dataset to account for the treatment of location as Eastings/
Northings rather than agnostic dataset coordinates.

Sometimes a partially georeferenced dataset may be compressed using the ECW JPEG 2000 SDK,
e.g. one with a registration but no projection or datum, or, in the case of JPEG 2000 files only, a
registration and a projection/datum pair that has no corresponding EPSG code. In the case of
compression to ECW files, the projection and datum are stored in the file as listed in the output
metadata. In the case of JPEG 2000 files, a partially georeferenced dataset is compressed without a
stored EPSG code, and when reloaded is loaded with projection and datum WGS84/LOCAL to
account for the registration information present (which indicates the dataset has a geographic
purpose). This behaviour can be tested using utility functions provided in the C API, and worked
around in client code if it is considered undesirable for some reason.
ECW JPEG 2000 SDK - 23

Chapter 2 FAQ ●
What is the maximum output bit depth per image component supported by the
SDK?
The SDK's JPEG 2000 encoder uses a 32-bit wide encoding pipeline. The maximum effective bit
depth per component is currently 28 bits, due to the need to reserve one or more bits as "guard"
bits and one bit as a "carry" bit.

Compression to a bit depth less than or equal to 28 bits is recommended.

You can compress to bit depths that are not multiples of 8, so if image quality is a high priority you
can still compress to (say) 26 bits of depth per component and later extract the image data into 32-
bit pixel buffers.

Any files (lossy or lossless) compressed to greater than 28 bits of depth would be unreadable in all
vendor implementations of the JPEG 2000 codec of which we are aware.

This restriction is currently the same across all known vendor implementations, althougha wider
pipeline of 64 bits which would increase the possible bit depth per component is in development
for the ECW JPEG 2000 SDK. In theory a 64 bit pipeline would allow the full 1-38 bit depth range
specified by the JPEG 2000 standard.

However, even with this enhancement there will be no way to do lossless compressions with more
than 32 bits of depth due to some rather obscure restrictions in the format of the JPEG 2000
codestream. A 64 bit pipelineshould allow 33-38bit lossy compressions.
24 - ECW JPEG 2000 SDK

3

About image
compression

Digital imagery is becoming more and more ubiquitous as time goes by. With the proliferation of
means whereby image data can be obtained (digital cameras, satellite imaging, image scanning)
there is now a vast amount of image data in use, all of which consumes valuable storage and
bandwidth resources. The need to use datastore and bandwidth resources more efficiently is what
drives the field of image compression. Image compression refers to a whole raft of techniques to
encode image data for the purpose of reducing its size for easier transmission or persistence. A
compressed image has undergone such encoding. The goal of an image compression scheme is to
achieve the maximum possible degree of image file exchange and storage efficiency whilst
preserving a minimum level of fidelity in the image that results after reconstruction from the
compressed format.
Currently the most effective compression techniques that have been found for imagery employ
frequency transforms, and of these, the most effective are wavelet based, employing the Discrete
Wavelet Transform to process a digital image into subbands prior to quantization and coding.
Wavelet based compression results in very high compression ratios, whilst maintaining a
correspondingly high degree of fidelity and quality in a reconstructed image. With advances in the
processing power of ordinary computers, a compressed image may be used almost anywhere an
uncompressed image can; the image, or required section of the image, is simply decompressed on
the fly before being displayed, printed or processed.
Typically, a color image such as an airphoto can be compressed to less than 5% of its original size
(20:1 compression ratio or better). At 20:1 compression, a 10GB color image compresses down to
500MB in size. This size is small enough to be stored on a CD-ROM. Images with less
information can achieve even greater compression ratios. For example, ratios of 100:1 or greater
are not uncommon for compressed topographic maps. Because the compressed imagery is
ECW JPEG 2000 SDK - 25

Chapter 3 About image compression ● Lossless or lossy compression
composed of multi-resolution wavelet levels, you can experience fast roaming and zooming on the
imagery, even on slower media such as CD-ROM.This chapter discusses image compression
issues, and describes the ECW (Enhanced Compression Wavelet) method.

Lossless or lossy compression
Lossless compression provides a compressed image that can uncompress to an identical copy of
the original image. This perfect reconstruction is the advantage of lossless compression. The
disadvantage of lossless compression is a ratio limit of approximately 2:1 compressed file size.
Lossy compression provides a compressed image that can uncompress to an approximate copy of
the original image.
Lossy compression sacrifices some data fidelity, in order to achieve much higher compression
rates than those available through lossless compression. This higher compression capability is the
advantage of lossy compression.

Wavelet based encoding
The most effective form of compression today is wavelet based image encoding. This technique is
very effective at retaining data accuracy within highly compressed files. Unlike JPEG, which uses
a block-based Discrete Cosine Transformation (DCT) on blocks across the image, modern wavelet
compression techniques enable compressions of 20:1 or greater, without visible degradation of the
original image. Wavelet compression can also be used to generate lossless compressed imagery, at
ratios of around 2:1.
Wavelet compression involves a way of analyzing an uncompressed image in a recursive manner.
This analysis results in a series of sequentially higher resolution images, each augmenting the
information in the lower resolution images.
The primary steps in wavelet compression are:

• Performing a Discrete Wavelet Transformation (DWT), quantization of the wavelet-space
image sub-bands; and then

• Encoding these sub-bands.
Wavelet images are not compressed images as such. Rather, it is the quantization and encoding
stages that provide the image compression. Image decompression, or reconstruction, is achieved
by completing the above steps in reverse order. Thus, to restore an original image, the compressed
image is decoded, dequantized, and then an inverse DWT is performed.
Wavelet mathematics embraces an entire range of methods, each offering different properties and
advantages. Wavelet compression has not been widely used because the DWT operation consumes
heavy processing power, and because most implementations perform DWT operations in memory,
or by storing intermediate results on a hard disk. This limits the speed or the size of image
compression. The ECW wavelet compression uses a breakthrough new technique for performing
the DWT and inverse-DWT operations (patent pending). ECW makes wavelet-based compression
a practical reality.
26 - ECW JPEG 2000 SDK

Chapter 3 About image compression ● ECW compression
Because wavelet compression inherently results in a set of multi-resolution images, it is suitable
for working with large imagery, to be viewed at different resolutions. This is because only the
levels containing those details required for viewing are decompresed.

ECW compression
The primary advantage of the ECW (Enhanced Compression Wavelet) technique is its superior
speed. ECW is faster for several reasons:

• The ECW technique does not require intermediate tiles to be stored to disk and then recalled
during the DWT transformation.

• The ECW technique takes advantage of CPU, L1 and L2 cache for its linear and
unidirectional data flow through the DWT process.

The ECW speed advantage is exploited for more efficient compression in several ways:
• ECW employs multiple encoding techniques. Once an image has gone through DWT and

quantization, it must be encoded. The ECW technique applies multiple, different encoding
techniques, and automatically chooses the best encoding method over each area of an
image. Where multiple techniques are equally good, ECW chooses the method that is fastest
to decode.

• ECW uses asymmetrical wavelet filters. Because of its speed, the ECW compression engine
can use a larger, and therefore slower, DWT filter bank for DWT encoding. This enables
smaller, faster inverse DWT filters to be used during decoding. Therefore, the decoding of
ECW imagery is much faster. ECW uses a 15 tap floating point filter bank for DWT
compression, and a 3 tap integer-based filter bank for the inverse DWT decompression.

Even with the additional processing carried out as described above, the ECW compression is still
at least 50% faster at compressing images than other compression techniques, when measured on
the same file, on the same computer.
Because the ECW technique does not require intermediate DWT files on disk during its
compression process, ECW has the potential to provide further benefits. These onward benefits
include:

• Multiprocessor optimizations: The ECW DWT compression and decompression engine
leverages the power of multiprocessor systems to achieve up to 95% acceleration on dual
CPU machines.

• Guaranteed latency: ECW provides guaranteed latency with its recursive algorithm
pipeline technique, and guaranteed compression time with defined CPU performance.
Although the ECW compression wizard reads uncompressed imagery from disk and writes
compressed imagery to disk, this is only an implementation, not an architecture
requirement. With equal facility, the ECW technique can take a line by line stream of
uncompressed imagery data as input, compress it, and emit a compressed stream of imagery.
Therefore, the ECW compression/decompression technique is available for a range of
applications without disk storage. Such applications include HDTV signal transmission,
real time compression of imagery on satellites for reduced down-link data rates, and
compression of imagery on digital cameras.
ECW JPEG 2000 SDK - 27

Chapter 3 About image compression ● JPEG 2000 compression
• ECW is tightly integrated with other ER Mapper products and functionality. Applications
such as ER Mapper and RightPixel can be used to compress input from smart data
algorithms, as well as directly from uncompressed imagery, to the “.ecw” file format. Other
ER Mapper tools, such as the orthorectification, mosaicing and balancing wizards can be
used to prepare seamless mosaics, which can in turn be compressed to a fraction of their
original size.

JPEG 2000 compression
JPEG 2000 is a new, international standard developed by the Joint Photographic Experts Group
(JPEG). The JPEG image standard has found broad acceptance in digital imaging applications
such as digital cameras and scanners, and the Internet.
JPEG 2000 is a substantial revision of the original JPEG standard. JPEG 2000 provides current
and future application features and support, in addition to superior image compression. The
feature set in JPEG 2000 includes:

• Lossy and lossless compression: JPEG 2000 provides lossy or lossless compression from
a single algorithm. The lossless compression is within a few percent of the best (and most
expensive) lossless compression available. Both lossy and lossless compression are
available in a single code stream.

• Progressive transmission: JPEG 2000 supports progressive image code-stream
organization. Such code-streams are particularly useful over a slow or narrow
communication link. As more data is received, the transmitted image quality improves by
some measure, such as resolution, size, spatial location, or image component. Within the
compressed code-stream, JPEG 2000 can transmit image data in mixed dimensions of
progressive measure.

• Random access: Spatial data is usually accessed randomly. The viewer examines the image
in an ad hoc or random sequence, according to their interest at that time. JPEG 2000
provides several mechanisms for spatial or “region of interest” access, through varying
resolution granularities.

• Sequential encoding: Low memory applications can scan and encode an image
sequentially from top to bottom, without buffering the entire image in memory, using the
JPEG 2000 standard. This build-up is acheived through a progression or tiling by spatial
location through the image.

• Domain processing: JPEG 2000 processes compressed domains with scaling, translation,
rotation, flipping and cropping capabilities.

• Seamless and unified compression: The unified compression architecture of JPEG 2000
enables seamless image component compression from 1 to 28 bits deep. This provides
superior compression performance with continuous tone color and gray scale images, as
well as bi-level images.

• Low bit rate performance: JPEG 2000 delivers a substantial performance improvement
over JPEG under low bitrate conditions, maintaining image fidelity.
28 - ECW JPEG 2000 SDK

Chapter 3 About image compression ● Support for the NITF standard
• Bit-error resilience: JPEG 2000 provides integrity checks and block coding mechanisms
to detect and rectify errors within coding blocks. This makes JPEG 2000 a strong choice for
applications requiring robust error detection and correction.

JPEG 2000 can operate in four modes: hierarchical, lossless, progressive or sequential. These
modes are flexibly specified within the JPEG 2000 standard, which allows complex interactions
between them, such as mixing hierarchical and progressive methods within a code-stream. Quality
and resolution are both scalable, with different granularities corresponding to each level of access
in an image. As a viewer randomly selects spatial regions, they can be transmitted and decoded at
varying resolution and quality levels. Maximum resolution and size is chosen at compression time,
but subsequent decompression or recompression can provide any level of image quality or
resolution, up to the compression threshold. For example, an image compressed losslessly with
JPEG 2000 can be subsequently decompressed at some lesser resolution to extract a lossy
decompressed image. This extracted lossy image is identical to the image obtained when lossy
compression is used on the original image. Therefore, you can decode and extract desired images
without needing to decode the entire code-stream or source image file. The selected subset of
image data will be identical to that obtained if only the selected data had been compressed in the
first instance.

Support for the NITF standard
The National Imagery Transmission Format (NITF) Standard is a set of combined government
standards for the formatting, storage and transmission of digital imagery. Originally developed for
United States military and government agencies, the NITF Standard has been accepted through
Standardization Agreements by NATO and other international defense organizations.
The NATO Standard Image Format (NSIF) is a NATO equivalent of the NITF 2.1 format, with
fully compatible structures. NITF and NSIF are profiles within the ISO Basic Image Interchange
Format (BIIF). NITF has also been accepted in industry, particularly amongst organizations
involved in public sector imaging. The National Imagery Transmission Format (NITF) describes
any file that is formatted according to NITF. The NITF standard includes the Computer Graphics
Metafile (CGM) and Joint Photographic Experts Group compression alogrithm (JPEG) standards
within its specification, and has now also been expanded to include compression profiles for JPEG
2000. These profiles qualify the allowable parameters for a JPEG 2000 compression process with
the intent of ensuring interoperability between the data produced by different institutions. The
ECW JPEG 2000 SDK includes support for encoding codestreams compliant with the NPJE and
EPJE profiles specified with NITF.
ECW JPEG 2000 SDK - 29

Chapter 3 About image compression ● Support for the NITF standard
30 - ECW JPEG 2000 SDK

4

Building from
Source

The source package will enable you to port the ECW JPEG 2000 SDK to alternate hardware
architectures and operating systems if desired, or make custom modifications to the code for your
specific needs. There are certain restrictions and limitations on permissible uses of the source
code that are imposed by the associated license agreements, however these have consistently been
being relaxed over time. See the standalone license documentation and the motivational
discussion elsewhere in this user guide in order to understand the agreements under which you can
license the source code.

If you make changes to the source code, we encourage you to submit changes that would be of
benefit to the wider user community of the SDK back to ER Mapper to be included in the main
distribution when it is upgraded. There is as yet no formal process for the submission of patches,
or a public source control repository, but these ideas are under consideration.

Building the source

Third party material
The default configuration of the ECW JPEG 2000 SDK requires the following third party
libraries:
ECW JPEG 2000 SDK - 31

Chapter 4 Building from Source ● Organization of the code
• Little CMS: A small integrated ICC profile engine. The source code should be placed in
$INSTALL/Source/C/NCSEcw/lcms. You can remove this dependency by removing
NCSJPC_USE_LCMS from the project settings and lcms112.lib from the link line,
however this will disable all ICC profile handling (including restricted ICC profiles).
LittleCMS is available from www.littlecms.com.

• TinyXML: A small XML parser. The source code should be placed in $INSTALL/Source/C/
tinyxml. You can remove this dependency by removing NCSJPC_USE_TINYXML from the
project settings, however this will disable the GML Geolocation XML box support. TinyXML
is available from www.sourceforge.net/projects/tinyxml.

• IJG libjpeg: The Independent JPEG Group's JPEG library. This should be placed in
$INSTALL/Source/C/libjpeg. This is required to build the NCSRenderer object, which
supports writing out JPEG files. NCSRenderer is a Windows-only feature of the ECW JPEG
2000 SDK. The IJG libjpeg is available from www.ijg.org.

Note: All three libraries are included as source code in the SDK distribution. You should
have no need to download, install or modify them in typical use cases.

All three libraries are (currently) redistributable in commercial applications at no charge,
providing their respective distribution requirements are met. For your convenience versions of
these are included in this distribution, subject to their respective licensing conditions, to enable
you to build the SDK with minimal effort.

In addition to these libraries, it is recommended that on the Microsoft Windows operating system
the ECW JPEG 2000 SDK should be built against the latest Microsoft platform SDK libraries.
These libraries include support for some of the more esoteric functions used by the SDK, some of
which may not be present in the default configuration of your Windows development
environment. The Platform SDK can be obtained from Microsoft. One current link is
www.microsoft.com/msdownload/platformsdk/sdkupdate/

Organization of the code
The ECW JPEG 2000 SDK is divided into four mostly decoupled software components.

• NCSUtil: A utility library provided for portability. NCSUtil includes routines for memory
allocation, threading, locks, unicode strings, event handling, and the like.

• NCSCnet: A network services library which is implemented in two flavours. On Windows, use
NCScnet2 which utilizes WinInet or WinHttp, and on POSIX platforms such as Linux, Solaris
and Mac OS X, use NCScnet3 which is based on raw sockets.

• NCSEcw: The largest of the three components. NCSEcw contains the encoders and decoders
for the ECW and JPEG 2000 raster formats, as well as automatic resampling, progressive
update, color management and geographical metadata translation support.
32 - ECW JPEG 2000 SDK

Chapter 4 Building from Source ● Makefiles and recommended build procedure
Note: The small NCSEcwC component, which formerly included all ECW compression
code, now only contains the C API Compression wrapper routines for backwards
compatibility with previous versions of the SDK.

• Libecwj2: There are three projects shipped with the SDK that share the libecwj2 name. The
first two are based on makefiles generated using the Trolltech authored utility Qmake, and build
static object and shared object libraries for all the code in the NCSUtil, NCSCnet, NCSEcwC
and NCSEcw components. In addition to the Qmake files, version 3.3 and after of the ECW
JPEG 2000 SDK includes a single static library convenience project called libecwj2 based
on the GNU autotools, that can be used for projects that require static linkage.

Makefiles and recommended build procedure
Several types of makefiles and project files are shipped with the ECW JPEG 2000 SDK.

On Windows, Microsoft Visual C++ 6.0 .dsp project files are shipped with the distribution, along
with a .dsw workspace for building the whole SDK. Microsoft Visual Studio .NET 2003
(MSVC7.1) .vcproj files and a corresponding .sln file are also shipped. It is recommended that
you use these project files to build the NCSEcw, NCSUtil and NCScnet dynamic link libraries
on this platform.

On platforms other than Windows, the recommended procedure is to use the new GNU autotools
build files provided with the distribution. The distribution includes pregenerated
Makefile.ins and configure scripts, which should make a build as simple as
configure; make install. There are also bootstrap scripts to regenerate these files if
you have all the relevant developer tools (m4, autoconf, automake, libtool) installed on your
system. The procedure for building using the GNU autotools files is discussed later in this section.

There are some build files provided with the distribution that are not recommended for usual
purposes. These include the Qmake build files, which may mainly be useful to users of Trolltech's
Qt cross-platform GUI and portability infrastructure, and the older custom makefiles for building
the shared objects for NCSEcw, NCSUtil and NCScnet. Although building and testing is still
conducted using these files, it may be better to use the other varieties as they are more carefully
maintained now, and will continue to be into the future.

You should have an up to date compiler and development environment installed on your build
machine. See the sections for building the SDK on various platforms below for an idea of what is
needed.

Building the Windows Visual Studio projects
In the case of Windows builds either Visual Studio 6.0 (with Service Packs 1-5) or Visual Studio
.NET 2003 are supported, and it is suggested you obtain the latest version of the Microsoft
Platform SDK which will enable you to build the hardware optimized SDK code.
ECW JPEG 2000 SDK - 33

Chapter 4 Building from Source ● Building the Windows Visual Studio projects
If you have the Microsoft Platform SDK installed (which is strongly recommended), then ensure
that the Platform SDK include and lib directories are included in your global Visual Studio
options, before the include and lib directories that are included in your installation of Visual
Studio, and by default in your global options.

To build the projects, once you have the SDK workspace or solution open (see below), set the
NCSEcwC_SDK project as your start-up project and select the appropriate build configuration
(Debug/Release on 32bit architecture, Debug64/Release64 for AMD64/EM64T). Build the
project, which will also cause its dependencies to build. You should be able to build all the
projects without making further changes to your environment, but if you encounter problems you
may need to consider the previously mentioned caveats. The project files should contain the
$INSTALL/Source/include and $INSTALL/lib directories in their “additional include” and
“additional library” directory settings respectively.

Specific notes for Visual Studio versions 6.0 and 7.1, both of which have project files included,
follow.

Visual Studio 6.0 .dsp projects
Open the workspace file $INSTALL/Source/C/NCSEcw/NCSEcw/NCSEcw.dsw. The
workspace contains the projects NCSEcw, NCSUtil, NCScnet, NCSEcwC_SDK,
NCSEcw_Static, NCSUtil_Static and NCScnet_Static - all projects should load
correctly.

To compile the ECW JPEG 2000 SDK with default functionality under Visual Studio 6.0, you
will need to have the Microsoft Visual Studio Processor Pack installed. The Processor Pack
installs only onto Visual Studio with Service Pack 4 or Visual Studio with Service Pack 5. The
supporting libraries it provides allow the use of various hardware optimizations in the ECW
JPEG 2000 SDK code base.

As a result of the dependency on the Processor Pack, the Visual Studio 6.0 build files provided
are by default incompatible with Visual Studio 6.0 Service Pack 6, which removes certain
functionality the Processor Pack provides (used in SSE/MMX optimization of decoding). If you
have Service Pack 6 installed and you wish to build using these files, you may need to wind back
the installation or disable the use of SSE and MMX optimizations in NCSJPCDefs.h under
$INSTALL/include. The relevant definitions to remove from this file are those for the
preprocessor symbols NCSJPC_X86_MMI and NCSJPC_X86_MMI_MMX.

Visual Studio 7.1 (.NET 2003) .vcproj projects
Open the workspace file $INSTALL/Source/C/NCSEcw/NCSEcw/NCSEcw.sln. The
workspace contains projects corresponding to those in the Visual Studio 6.0 workspace file.
These should all load correctly, so pay attention if any error messages appear when you open the
solution.
34 - ECW JPEG 2000 SDK

Chapter 4 Building from Source ● Building using the GNU autotools build structure
Visual Studio 7.1 supports all the functionality and code included by default in the SDK without
modification, so the concerns about various service and feature packs that apply to Visual Studio
6.0 are not an issue.

Building using the GNU autotools build structure
This build structure is tested under Debian Linux, Solaris 8/9, and Mac OS 10.3. Due to the large
number of available “flavours” of Linux and Solaris, we can't guarantee that the code will build
correctly without any modifications. If you discover a problem, or perhaps you've modified the
code base to work on a new variant of any of these platforms, you may wish to submit what you've
found to ER Mapper for use in later versions.

The GNU autotools are development utilities that among other things, create scripts which
configure source code distributions and makefiles for use on a cross-platform basis. A software
project that uses these tools normally ships with a configuration script, “configure”, and a
number of unprocessed makefile templates called “Makefile.in”. Running the configure
script produces platform-specific makefiles from the Makefile.in files, which contain the
usual make targets.

In general, when building the ECW JPEG 2000 SDK with the GNU autotools, you should simply
run the configure script in the top directory, producing Makefiles for your machine, and then run
make with the install target, which builds the shared and static libraries and installs them into the
expected locations on your machine. Both the configuration and the build steps take a little while
to complete.

Refreshing the GNU autotools support files
If you are familiar with the GNU autotools, you may wish to modify other files distributed with
the SDK, namely the high-level Makefile templates “Makefile.am” that are used by automake,
and the basic scripts “configure.in” that are used by autoconf. A script called
“bootstrap” is provided with the SDK that may help you to refresh your other build files once
changes have been made.

Be warned, however, that incompatibilities exist between some versions of the GNU autotools, so
if your development environment is not set up in a way that is friendly to the SDK build structure,
you may obtain poor results.

Unless you need to add additional files to the SDK source distribution to achieve your goal, it may
be better to avoid altering the Makefile.am and configure.in files.

Other prerequisites
In the case of the Linux, Solaris and Mac OS X, with which the distribution has been tested more
thoroughly, we suggest a standard installation of gcc/g++ 3.4 or higher, and GNU Make be used
to compile. You may also have success with earlier versions of gcc or other compilers, although
modifications to the source may be required (for example, versions of gcc prior to 3.4 do not play
happily with wide character C++ strings on Solaris). You should check the available installation
ECW JPEG 2000 SDK - 35

Chapter 4 Building from Source ● Building using the Qmake build files
packages for your platform of choice when deciding which versions of the GNU autotools you
may need to install. The GNU autotools also have dependencies on other software, including Perl
and the m4 macro language.

Building using the Qmake build files
An older form of the build system uses build files created using Trolltech's make configuration
tool, Qmake (which is shipped with Qt). Generated build files for Linux, Solaris, Mac OS X and
Windows are included, as well as the master Qmake configuration files libecwj2.pro and
examples.pro which are used in conjunction with Qmake to generate new build files. If you
have access to Qmake (available free from Trolltech as part of Qt) you can modify these files as
a good starting point for generating build files for other operating systems, compilers and
hardware.

The ECW JPEG 2000 SDK ships with the shell script file NCSMakeQmakeFiles.sh which
generates the Qmake build files from an instance of the source distribution using the Qmake
command line tool. The script is designed for use in conjunction with the Windows cygwin
environment, but should be relatively easily ported to other interpreters and environments if
necessary.

By default Qmake introduces some Qmake-dependent material into the makefiles it produces,
which can make them unsuitable for distribution (they cannot be used on systems without Qt/
Qmake installed). This is because Qmake is anticipated to work by generating makefiles on the
fly and then building the binaries on the spot. The NCSMakeQmakefiles.sh script eliminates
this Qmake-dependent material from the generated makefiles after they are produced. the
makefiles so that you can use them without needing Qt or Qmake installed. If you regenerate the
build files or create new ones using the .pro Qmake files, you may need to make minor manual
edits to remove Qmake dependencies for distribution.

Qmake build files on Windows
To build the single static libecwj2S.lib library from the source follow these instructions:

1 Open your Microsoft IDE of choice (either Visual Studio 6.0 or .NET 2003).

2 Open the libecwj2 project file from $INSTALL/Source/NCSBuildQmake: either
libecwj2-win32-static.dsp or libecwj2_win32_net_static.vcproj. A default
workspace is created.

3 Choose either the release or debug configurations.

4 Using .NET 2003: Change the startup project to NCSEcwC_SDK.

5 Using Visual Studio 6.0: Change the build configuration to NCSEcwC_SDK.

6 Build all.

7 Once the build is complete the libecwj2S.lib library has been created in the
$INSTALL/lib directory.
36 - ECW JPEG 2000 SDK

Chapter 4 Building from Source ● Building using the Qmake build files
To build the single shared libecwj2.dll library follow the steps above with the project files
libecwj2-win32-shared.dsp and libecwj2_win32_net_shared.vcproj. These projects generate
the libecwj2.lib import library in $INSTALL/lib and the libecwj2.dll DLL in $INSTALL/bin.

To build the examples on Windows, open and build the project .dsp or .vcproj files in each
example's directory after building the libecwj2 projects. The examples are identified as linking
statically or dynamically against libecwj2 in their filenames. You will need to specify the
release or debug configuration of each example depending on which configuration of the
libecwj2 projects has been built.

Note: Due to a limitation in qmake it may be necessary to specify /
SUBSYSTEM:CONSOLE instead of /SUBSYSTEM:WINDOWS in the .NET
2003 sample projects in order for them to build correctly (some of the examples
can report an unresolved symbol _WinMain16 in other cases). This can be done
using the IDE's Project|Properties|Linker|Command Line dialog.

Qmake build files on platforms other than Windows
To build the single static libecwj2S library on a UNIX-life platform follow these instructions:

1 Open a shell

2 Change directory to $INSTALL/Source/NCSBuildQmake

3 Invoke

4 make -f Makefile-<platform>-static

5 where <platform> is the name of your OS, e.g. "linux".

6 The target directory is $INSTALL/Source/lib/<platform>/static

To build the single shared libecwj2 library do the same things substituting "shared" for "static"
where applicable.

To build the examples against libecwj2 (static or shared) use make -f with the appropriate
makefile located in the example project directory (e.g. $INSTALL/examples/decompression/
example1). The examples should be configured to link against the previously built libecwj2
projects automatically.

The target directory for the example code is $INSTALL/bin. Example binaries are named
according to the convention (C|D)Example(n)[S][d], where C and D distinguish between
examples of ECW and JPEG 2000 compression and decompression respectively, n is the example
number, and an S indicates the binary is statically linked. For example, DExample1S is the
statically linked version of decompression example 1. To learn more about the example programs
and the SDK features that they demonstrate, look at the relevant sections of the PDF manual and
the sample code itself (updates to this text will be forthcoming).
ECW JPEG 2000 SDK - 37

Chapter 4 Building from Source ● Old build structure on non-Windows platforms
Old build structure on non-Windows platforms
In previous releases of the ECW JPEG 2000 SDK source code, platforms other than Windows
were supported with the use of custom-written makefiles for the separate NCSEcw, NCSCNet,
NCSUtil and NCSEcwC libraries.

You can build release or debug versions of these libraries by running the script at $INSTALL/
Source/NCSNightlyBuild/NCSNightlyBuildUnix.ksh. Before running this script, you must set
the environment variable $NCSTOP to the main directory of your unzipped copy of the SDK
source archive. You also need to edit the value of $NCSTOP specified at the top of the script, and
if you are using a shell other than ksh (for example, bash) you should edit the "shebang" line
appropriately.

In summary, to build the NCSEcw, NCScnet, NCSUtil and NCSEcwC libraries on Solaris,
Linux or Mac OS X:

1 Unzip the SDK source archive to a directory on your machine.

2 Open a shell.

3 Set the value of $NCSTOP in your environment, e.g. “export NCSTOP=~/dev/
ecwsdk”.

4 Change directory to $NCSTOP/Source/NCSNightlyBuild.

5 Use your editor of choice to synchronise the value of $NCSTOP in the script
NCSNightlyBuildUnix.ksh with your installation directory.

6 Edit the “shebang” line of the script if necessary.

7 Run ./NCSNightlyBuildUnix.ksh specifying an output target, e.g. “debug” or
“release” as an argument.

The shared libraries are built in the target directory $INSTALL/bin/<platform> where
<platform> is your operating system - usually "solaris", "linux" or "macosx".

Although these custom-built makefiles are no longer recommended as the best way to build the
source code into a useful form, they have still received basic testing for the current distribution. If
you have a project that already relies on the libraries built by these makefiles from a previous
version of the ECW JPEG 2000 SDK, you may be able to upgrade to version 3.3 without making
modifications.

General notes

Windows build: Java dependency
The ECW JPEG 2000 SDK includes some JNI material which creates a dependency on the
J2SDK in the win32 build. To remove this dependency this material has been removed from the
default build files supplied with the SDK. You can add the files ecw_jni.c and ecw_jni_config.c
to the “Source Files” listing for the projects NCSEcw.dsp and NCSEcw_Static.dsp, or to
38 - ECW JPEG 2000 SDK

Chapter 4 Building from Source ● Windows build: Java dependency
NCSEcw.vcproj and NCSEcw_Static.vcproj if you are using Visual Studio .NET 2003, and
add valid Java SDK include and lib paths to your global search paths to restore this material to the
build. The JNI support is not required for the majority of uses of the SDK and has not been
thoroughly quality checked for this release.

Windows build: WinHTTP dependency
The SDK's HTTP support on Windows uses Windows HTTP Services (WinHTTP). This was
formerly available (version 5.0) as a standalone SDK from Microsoft, but support has been
discontinued for the standalone SDK since version 5.1, which is available as part of the Microsoft
Platform SDK. Missing WinHTTP from your system is usually flagged when you receive an
error message about the compiler being unable to find the file winhttp.h. If this is the case it is
suggested that you obtain a copy of the Platform SDK to build against.

Windows build: required link line for static builds
When using the static libraries on windows, you need to link with the following libraries:
“NCSEcws.lib NCScnets.lib NCSUtils.lib version.lib imagehlp.lib shlwapi.lib Crypt32.lib
wsock32.lib”. The default static library project settings link to the “Multithreaded” static
runtime.

Support for Windows CE
WindowCE/PocketPC EVC3 workspace and project files are included in this distribution,
however they are currently both unsupported and somewhat deprecated. They may however
provide a starting point for modification towards a functional version of the libraries on embedded
versions of Windows.

Source code documentation and info
Documentation describing the programming interface to the code is available in the
ECW_SDK.pdf file, which is also included in the binary distributions. This PDF document
contains tips and tricks, example code with discussion, and a reasonably complete API reference.
If you have not worked with the ECW JPEG 2000 SDK before, this is a good entry point to use to
gain an understanding of the API and its associated development paradigms.

HTML doxygen generated documentation is available for the main objects and routines in the
NCSEcw library, accessed via $INSTALL/Source/C/NCSEcw/NCSEcw/html/index.htm.

There is currently relatively little information made publicly available concerning the design of
the code itself. Feel free to pose questions about the internal workings of the code on the ER
Mapper support forums or the appropriate company-wide or regional support aliases and we may
be able to help you with your query.
ECW JPEG 2000 SDK - 39

Chapter 4 Building from Source ● Windows build: Java dependency
40 - ECW JPEG 2000 SDK

5

Development
This section describes the structure of the ECW JPEG 2000 SDK and how to set up a Visual C++
development environment for your ECW JPEG 2000 SDK implementations. These descriptions
are set out for the PC platform. To use the ECW JPEG 2000 decompression library, you require
Visual C++ Version 6 SP5 (or later), and the Microsoft Processor Pack, installed on your
computer.

ER Mapper distributes the full source code of the ECW JPEG 2000 SDK to facilitate its use in
customised and cross-platform projects, and to signal its intent to foster the goals of the Open
Source Software (OSS) community.

ECW JPEG 2000 SDK contents
This section describes the ECW JPEG 2000 SDK components that are delivered to your system
upon installation.

Start menu items
Several items are placed in the Start Menu under Programs -> Earth Resource Mapping ->
ECW JPEG 2000 SDK:

• ECW Client Statistics Program: This utility provides statistics regarding any ECW client
applications running, including hits and usage, request loads, caching and other ECW
performance measures.

• Online Help: This is the Windows Online Help version of the ECW JPEG 2000 SDK
documentation.

• SDK Documentation (PDF): This is the ECW JPEG 2000 SDK documentation in Adobe
Acrobat PDF format. The content is the same as that of this User Guide.
ECW JPEG 2000 SDK - 41

Chapter 5 Development ● PC library and include files
PC library and include files
To install PC Library and Include files, complete the following procedure.

1 Run the downloaded SDK executable file to install the SDK directories and files.

2 Open Microsoft Developer Studio (MsDev) and select Options from the Tools menu.

3 Select the Directories tab in the Options dialog.

4 Select include files in the Show directories for: box and add the installdir\include
directory to the list.

5 Click OK to close the dialogs.

Project settings - Visual C++
Your Visual C++ projects must have the following settings to link your applications to the SDK
library.

1 Select Settings from the MSDev Project menu.

2 Enter the following information in the Project Settings dialog:

• C, C++ Code Generation - Multithreaded DLL
• Link/General/Object Files - Add NCSEcw.lib, NCSEcwC.lib and NCSUtil.lib

3 Click OK to close the Project Settings dialog.

Note: These settings will be the same for the Debug and Release configurations of your
application, because debug versions of the library files are not included with the
SDK (although you are, of course, free to build them yourself). If you wish to
enable unlimited compression to the ECW or JPEG 2000 formats (as permitted by
the Public and Commercial Use License Agreements), you must link your
application with NCSEcwCu.lib instead of NCSEcwC.lib when using the C API.
Do not do this if your application does not abide by the terms of the applicable
license agreements.

How imagery is accessed
Images consist of rows of data, and a number of columns of data, with one or more bands (values)
of data at each pixel in the array of data. For example, a compressed image might consist of
200,000 rows x 300,000 columns x 3 bands for a Red-Green-Blue image. Your application simply
requests a region to view, and the library does the rest. When working with imagery, your
application opens one or more views to the image(s) desired. It then performs one or more
42 - ECW JPEG 2000 SDK

Chapter 5 Development ● How to read a view
SetFileViews for each view opened and reads imagery for each SetFileView area. Despite
the huge size of the images that the ECW JPEG 2000 SDK can process, the ongoing region-
specific decompression of data is always transparent to your development process.

How to read a view
The essential information and procedure for accessing a file view is as follows:

• What image(s) to view, process, display or print: The NCScbmOpenFileView() function
opens a view into an ECW JPEG 2000 image file. This image file can also be served from a
local or remote Image Web Server, in which case the image would be defined by its URL.

• Obtain information about the image that has been opened. The NCScbmGetViewFileInfo()
function obtains details about the size of the image, and its world coordinate system (size of
pixels, map projection, and so forth).
Set a desired view area into the image, and how large a display area is required for that view.
The NCScbmSetFileView() and NCScbmSetFileViewEx() functions specify the area
you wish to view, and how large an area your application is using in its display.

• Read data from a view. You can use calls that return information in a BIL (Band Interleaved by
Line), RGB or BGR format. For example, the NCScbmReadViewLineBGR() function returns
data in an order that can be directly placed into a Windows bitmap.

• Close a view. You can close a view with the NCScbmCloseFileView() and
NCScbmCloseFileViewEx() functions.
There are some additional functions, particularly when using the Refresh callbacks interface
into the library. However, the above outline gives the basic interface approach into the library.

The SetFileView concept
The ECW JPEG 2000 viewing and decompression library is very powerful, in that it will present
an image to you at a resolution that your application requires rather than the resolution that the
original image presents.

Consider the example of an application that currently has a window open that is 500x300 pixels in
size, and you are opening an image that is 15,000 x 10,000 pixels in size. When displaying an
overview of the image, (the entire image area), you probably would prefer not having to read all
15,000 x 10,000 pixels to display an overview of the image. The advantage is that when you call
the NCScbmSetFileView() function, you can specify:

• The area of the image to view. This can be any area from the entire image size down to a smaller
portion of the image. You specify this as the top left and bottom right coordinates of the required
area. Since the SDK treats each pixel in the compressed image as an area rather than a point,
the bottom-most and right-most row and column respectively are included in the extracted view.

• The size in which your application requires the image to be displayed.
• The bands of information that you wish to view from the image.
• If the view is to be read using the blocking of refresh callback interface. This is specified when

you open a view, not when you set a view area for an opened view.
ECW JPEG 2000 SDK - 43

Chapter 5 Development ● Viewing areas smaller than your application window area
The following diagram illustrates how you would specify the coordinates of the area to be viewed:

For example, to view the entire image example above, you might do:

// a view of the entire image into a 500x300 view area
error = NCScbmSetFileView(pView,nBands,pBandList,0,0,14999,9999,500,300);

Whereas to view the smaller area of the image, you might do:

// a view of a portion of the image into a 500x300 view area
error =
NCScbmSetFileView(pView,nBands,pBandList,2000,1000,10000,5000,500,300);

Note: For more accuracy you can call the NCScbmSetFileViewEx() function instead
of NCScbmSetFileView(). This allows you to specify the world coordinates of
the image view.

Viewing areas smaller than your application window area
You should not request an area from the image that is smaller than the window size. For example,
if your window size is 500 x 300, this is the smallest view area you should request from the
library. This is because, when zooming to sub-pixel levels (as in this example), it is faster to
perform pixel zooming using higher level graphics operations. These can quickly zoom bitmaps
using graphics hardware assist, rather than using a low level library such as the ECW JPEG 2000
library to perform this operation for you.

Requesting odd-aspect views
You can ask for odd-aspect views of imagery. For example, you could request the library to return
the area from (1000,2000) to (2000,5000) into your window view area of 500x300. This might be
desirable in cases where the original data is a non square pixel size (seismic data is an example of
this type of data). The library will automatically scale data in the X or Y direction to meet your
44 - ECW JPEG 2000 SDK

Chapter 5 Development ● Selecting bands from an image file to view
requirements. To perform this automatically, your application should use the NCScbmGetView-
FileInfo() to find out the world coordinate size for each pixel, and take this value into account
when displaying imagery.

Selecting bands from an image file to view
A compressed image file may contain from one to any number of bands. Typically a file will
contain 1 (grayscale) or 3 (color) bands, but not in every case (e.g. with hyperspectral imagery).
When you perform a SetFileView(), you specify the number of bands to view, and the band
numbers to view. For example, you might wish to read 3 bands from a 7 band compressed image,
and you may wish to read band numbers 5, 4, and 2. You do this by indicating the number of bands
(nBands) and allocating an array equal to this size, which is filled with the actual bands to read.

If your application is not performing any image processing functions, and is simply designed to
display a good image regardless of the number of input bands, we recommend the following
approach:

• For images with three or less bands, specify the number of bands in the image. For images with
more than three bands, specify 3 bands as the number to view.

• Select the first bands in the file. For example, use band 0 for a 1 band file, bands 0 and 1 for a
2 band file, 0,1, and 2 for a 3 band file, and bands 0, 1, and 2 for a 20 band file.

• Use one of the read line functions that will return data converted into a RGB view (the RGB or
BGR calls). Use the BGR call if you are using Windows style bitmaps, as you don’t have to
perform any conversion on the image.

In this case, the library will fill the RGB (or BGR) line array in a way to always ensure a good
looking image. For example, it will automatically fill all of Red, green and Blue for an input view
containing only 1 band, which ensures that a grayscale view will still appear correctly in your
RGB or BGR based bitmap.

Note: When developing applications with the ECW JPEG 2000 SDK, be aware that in
keeping with programming convention band numbering commences at zero. For
example, in a three band RGB image, the first, second and third bands (red, green
and blue respectively) must be specified as 0, 1, and 2 when writing an application
built on the SDK.

Blocking reads versus the refresh callback
interface

There are two ways to access images:

• Blocking reads: You perform a SetFileView, read the view, perform another
SetFileView, and so on. The library will block your reads from the view until image data is
available.
ECW JPEG 2000 SDK - 45

Chapter 5 Development ● When to use blocking reads
• Refresh callback interface: A SetFileView can be performed whenever you choose, even
if reading is not complete.

From time to time, the library will call your application back, using a callback function that you
specify, to read new imagery for your application. You might get several callbacks for a single
SetFileView, when the image is being served from a remote Image Server, as additional
information comes in to update the image view. This is progressive updating of the image view.

To use blocking reads with the C API, you specify NULL as the callback function when performing
the NCScbmOpen-FileView() call.

To use refresh reads with the C API, you specify the name of a callback function when performing
the NCScbmOpen-FileView() call. The body of this function is defined in your application
source code, and typically reads image scanlines from the current view using one of the SDK
functions.

How the two methods operate, and when you might use the different techniques, depends upon
your application. You can mix both methods (for different views) into the library at the same time.
Typically, use the different approaches as follows:

When to use blocking reads
Use blocking reads in the following situations:

• Your application is not threaded (there is no need to be able to perform updates of the image
display within another thread).

• You are printing an image out to a printer (so your view area is large and static).
• You have a simple use for the SDK and don’t want to unnecessarily debug multi-threaded logic.
• Your application cannot persist “state” information between each view request for an image.

When to use refresh reads
Use refresh reads in the following situations:

• Your application can refresh the image view on demand.
• Your application is thread safe.
• Your application is highly interactive, for example roaming and zooming over imagery in real

time, and needs to respond rapidly to user input.
• Your application is primarily designed to display imagery via the Internet using the Image Web

Server technology, and may need to compensate for the varying latency of an Internet
connection.
46 - ECW JPEG 2000 SDK

Chapter 5 Development ● Blocking reads
Blocking reads
The ecw_example1.c program in the examples\decompression\examples1 directory
demonstrates the use of blocking reads. This the more conventional approach, where your
application wants to set a view area, read some imagery from that view area, set another view area,
read that imagery, and so on.

This is called the blocking reads interface because when your application reads the imagery line
by line for a view area, the library will block your application until the imagery is available to be
read. In the case of a local image file (from a disk or CD-ROM), the delay will be very short.
However, in the case of viewing an image from a remote Image Web Server via the Internet or
your local intranet, it may take some time to assemble a complete view of the requested area,
particularly when accessing data from a slow modem link. After you set a view into an image and
read imagery line by line, the reads will block your application when data is not yet available for a
line. In such circumstances the use of the blocking reads interface may not be appropriate.

The library responds to a read call from the application by waiting a preset time and then returning
whatever data is available. With slow connections to a remote server, this time could expire before
all the data has been received from the server. Your application could then display an incomplete
image. To overcome this problem you should preferably use refresh callbacks. Failing that, you
could create a Refresh button that calls the same SetFileView, and then reads the image data
that has been cached in the PV. The data will remain cached as long as the DLL is not unloaded.

Refresh callbacks
The ecw_example2.c program in the examples\decompression\examples2 directory
demonstrates the use of refresh callbacks. In this example, the SetFileView() calls in the main
thread are de-coupled from the reading from a FileView in the refresh callback thread. This has
an important implication: The view area and extents in the refresh callback may be different from
the most recent SetFileView() performed. You must use the NCScbmGet-ViewInfo()
function call while in the refresh callback, to determine the actual view area and size currently
available.

There is no direct correlation between SetFileViews() in the main thread and reading a view
within the refresh callback thread.

You may receive multiple refresh callbacks for a single SetFileView() when an image is being
served from an Image Web Server, and new information for the view area is transmitted
continuously. This is known as progressive updates.

Some SetFileViews() might not ever be issued as a refresh callback at all. This will be the case
when your application is issuing many SetFileViews(), for example, when the user is roaming
and zooming), in which case the library will automatically flush some SetFileViews if there are
too many currently pending.

Although the refresh callback interface requires threads in your application, it is often actually
easier to implement than simple blocking reads. This is because your application no longer has to
regard the user as waiting while an image is redrawn. You simply issue SetFileView()
ECW JPEG 2000 SDK - 47

Chapter 5 Development ● Canceling reads
whenever you want the view area to change, and the library will optimize the reading, and call
your application to update the on-screen view when appropriate. Do multiple SetFileViews per
Open-FileView to increase performance.

If you are using the refresh callback approach, you must keep a FileView open while the view is
being updated. If you are using the blocking reads approach, you have two alternatives, as shown
below:

The following approach is the preferred interface to the library:

NCScbmOpenFileView() // open a file view
NCScbmSetFileView() // set a file view

// _ Readimage _// Read the image using one of the read line calls
NCScbmSetFileView() // Set another file view

// _ Readimage _// Read the image using the new view
_ continue until finished _// keep showing new views

NCScbmCloseFileView() // Close the file view

This will provide slightly better performance than doing the following:

NCScbmOpenFileView() // open a file view
NCScbmSetFileView() // set a file view

// _ Readimage _// Read the image using one of the read line calls
NCScbmCloseFileView() // Close the file view

NCScbmSetFileView() // Set another file view
// _ Readimage _// Read the image using the new view

NCScbmCloseFileView() // Close the file view
... and so on _

This is because the ECW JPEG 2000 SDK library can cache image information between
NCScbmSetFileViews, allowing your application to perform better. However, the library will
still cache file information even if your application can not keep state information between
requests to view different areas of an image. This means that you can still obtain very high
performance in such cases.

Note: The default maximum size of a view in progressive mode is up to 4000 dataset pixels in either
dimension, or any width and up to 64 pixels high. Since the intent of the refresh callback or ‘progressive
read’ mode is to support interactive display, this restriction should not unduly impact your application. On
the other hand, if you need to support larger views, the default value of 4000 can be increased by setting a
runtime parameter (NCSCFG_MAX_PROGRESSIVE_VIEW_SIZE). See the description of the
NCSecwSetConfig function for more information.

Canceling reads
You do not have to read all lines from a view that you have set. For example, if your application
decides that it needs to have a new view into an image, and you are still not through reading from
an existing view, you can quit performing the line-by-line reads, and go ahead and perform a new
setview.
48 - ECW JPEG 2000 SDK

Chapter 5 Development ● Multiple image views and unlimited image size
Multiple image views and unlimited image
size

You can open views to as many images as you like at the same time. There are no internal limits.
The library has been tested with as many as 10,000 compressed images open at the same time.

You can open as many simultaneous views into the same image as you like. There are no internal
limits.

The compressed image can be of any size (e.g. you can open views into compressed TB images).

Error handling
Most of the decompression calls in the ECW JPEG 2000 SDK return either an NCSError
enumerated value, or a CNCSError object (which has an NCSError value as a data member).
Functions are provided to obtain meaningful error messages from these return values:
NCSGetErrorText can be used to retrieve error information from an NCSError value, and
CNCSError::GetErrorMessage can be used to query a CNCSError object for error text.

Memory management

Memory usage
The ECW JPEG 2000 SDK requires very little memory for image decompression while
decompressing imagery for a view area. Imagery is decompressed on the fly on a line-by-line basis
so that even if you open up (for example) a huge view (say 1,000,000 x 1,000,000) into a TB
(1,000,000 x 1,000,000) image, the library will perform this for you.

Caching
The ECW JPEG 2000 SDK does perform a range of caching operations to speed access to
compressed image files, although it will never default to using more than one quarter (25%) of
physical RAM for caching operations.

The size of the cache allocated by the SDK during its normal operation can be capped or
controlled using the call NCSecwSetConfig(NCSCFG_CACHE_MAXMEM,nCacheSize) where
nCacheSize is a 32 bit unsigned integer specifying the desired cache size.

When accessing imagery over an internet connection via ECWP, the ECW JPEG 2000 SDK
caches imagery data in main memory on the client side to speed roaming and zooming over areas
that have already been accessed.

When accessing imagery from a local ECW file, the SDK also caches the data connected with that
particular file and shares it amongst all open views on that file.
ECW JPEG 2000 SDK - 49

Chapter 5 Development ● Coordinate information
When a file view is closed, by default, the contents of the cache are not freed. The reason for this
behaviour is that if another view is immediately reopened it will be able to access the cached data,
improving performance.

The default behaviour is to persist data from a particular ECW or JPEG 2000 file in the cache until
one half hour has passed.

While data from a particular file is still cached, the SDK maintains a lock on that file even if there
are no open file views connected with it. It is necessary to release the cache to remove this lock.

Via the C API, this is done using a call to NCScbmCloseFileViewEx(...,TRUE), where the
second argument is set to TRUE to specify that cached data should be released.

Via the C++ API, the same operation is performed using CNCSFile::Close(TRUE).

A shortlist of SDK functionality of interest for controlling the cache is

NCScbmCloseFileViewEx(..., TRUE)
NCSecwSetConfig(NCSCFG_CACHE_MAXMEM, ...)
NCSecwSetConfig(NCSCFG_FORCE_FILE_REOPEN, ...)
NCSecwSetConfig(NCSCFG_CACHE_MAXOPEN, ...)
CNCSFile::Close(TRUE)

You should use these functions to implement the caching behaviour required by your SDK
application.

Coordinate information
ECW and JPEG 2000 files contain embedded image coordinate information in addition to
compressed image data. Using the ECW JPEG 2000 SDK, geographical metadata can be obtained
from an image file in either of the two formats. The primary use of this data is to specify the
geographical location depicted in the image. You can extract and use this important data for
georeferencing the image or in mosaics of multiple images. See the chapter "Geocoding
information" for more information on how geographical metadata is included in ECW and JPEG
2000 files.

To obtain coordinate information from an ECW file using the C language API of the ECW JPEG
2000 SDK, call NCScbmGetViewFileInfo(), which will return a pointer to an
NCSFileViewFileInfo data structure. This data structure includes the following components:

eCellSizeUnits These are units used for the cell size. This can be one of the following:
Meters (or RAW) = 1, Degrees = 2, Feet = 3

eSizeY This is the number of rows (cells down) in the image.

eSizeX This is the number of columns (cells across) in the image.

fCellIncrementX,
fCellIncrementY

This is the cell dimension sizes.

fOriginX,
fOriginY

This is the world coordinates of registration (top-left) cell, in
CellSizeUnits.
50 - ECW JPEG 2000 SDK

Chapter 5 Development ● Transparent proxying
Transparent proxying
A further problem could occur where the connection to the Image Web Server is via a proxy.
ECWP packets could be clocked by the proxy if authentication is enabled. If this happens you
could, as a workaround, configure the local network to use “transparent proxying”, a feature
supported by many different types of proxies. The following procedure describes how to use
transparent proxying as a workaround:

• Disable the authentication on the proxy.
• Install the client side proxy on all the client PCs on the network.
This replaces the networking DLLs on the client machines and makes the proxy “transparent” to
the applications running on the client. It does this by handling the authentication itself rather than
having the applications do it.

Delivering your application
If you are delivering on a Windows platform, your application will normally consist of an
executable (“.exe”) file and a number of Dynamic Link Library (“.dll”) files.

These application files must be installed to run your application. The NCSUtil.dll,
NCSecw.dll and NCScnet.dll files should be installed in a bin directory. The NCSecw.dll
file is self-registering, becoming available to applications after registration. Keeping these files in
the same directory makes all these libraries available to the system. Applications operating under
the Free Use license agreement (and therefore limited to 500MB uncompressed output size when
compressing) also require NCSEcwC.dll in the directory.

Creating compressed images
The applications you develop using the ECW JPEG 2000 SDK must be able to supply the
following information to the compression engine:

• The name of the output compressed file to create or the name of the source image to compress.
In the latter case, the software will generate a default output file name based on the input file
name.

• The image height, width, number of bands, etc.

szDatum This is an ER Mapper style Datum name string, e.g. “RAW” or
“NAD27”.

szProjection This is an ER Mapper style Projection name string, e.g. “RAW” or
“WGS84”.
This value will never be NULL.
ECW JPEG 2000 SDK - 51

Chapter 5 Development ● Preserving image quality
• How you want the image compressed, e.g.; as a grayscale file, as a color (RGB) file, or as a
multi-band file.

• The desired compression ratio to use; typically between 20:1 to 50:1 for color compression, and
10:1 to 20: 1 for grayscale compression.

• Optionally, you can supply geocoding information such as datum, projection, units, etc. to be
embedded in the compressed image file.

Preserving image quality
Your application will need to provide a Target Compression Ratio value to the compression
engine. This value specifies the desired compression ratio that the user would like to achieve from
the compression process. After compressing the image, the compression engine will indicate the
actual compression ratio achieved. For example, after compression you may note that the actual
compression ratio achieved was in fact 40:1, resulting in an output file size of only 25MB. This
would be the difference between the Target Compression Ratio (what you set) and the Actual
Compression Ratio (what you achieved). Except when compressing very small files (less than
2MB in size), the Actual Compression Ratio will generally be equal to or greater than the Target
compression, sometimes significantly greater. The reason for this is as follows:

When you specify a Target Compression Ratio, the compression engine uses this value as a
measure of how much information content to preserve in the image. If your image has areas that
are conducive to compression (e.g. desert or bodies of water), a greater rate of compression may
be achieved while still keeping the desired information content and quality. The compression
engine uses multiple wavelet encoding techniques simultaneously, and adapts the best techniques
depending upon the area being compressed. It is important to understand that encoding techniques
are applied after image quantization and do not affect the quality, even though the compression
ratio is higher than what might have been requested.

Optimising the compression ratio
When compressing imagery, the "Target Compression Ratio" is specified.

The following table indicates typical Target Compression Ratios:

Imagery Application Target Compression Ratio

Color airphoto mosaic High quality printed maps. 25:1

Color airphoto mosaic Internet or email distribution. 40:1

Grayscale airphoto mosaic High quality printed maps. 10:1 to 15:1

Grayscale airphoto mosaic Internet or email distribution. 15:1 to 30:1

Lossless (JPEG 2000 Only) Imagery with perfect reconstruction. 1:1
52 - ECW JPEG 2000 SDK

Chapter 5 Development ● Compressing previously compressed images
Depending on the imagery, your final compression ratio may be higher than the target
compression rate. Imagery with large areas that are similar (for example desert, forests, golf
courses or water) often achieves a much higher actual compression rate.

Scanned topographical maps also often achieve a higher compression rate, as do images with
smooth changes, such as colordraped DEMs.

Note: When compressing to the JPEG 2000 file format, which supports lossless
compressed images, lossless compression is specified by selecting a target
compression ratio of 1:1. This does not correspond to the actual compression rate,
which will generally be higher (between 2:1 and 2.5:1).

Tip: When you compress individual images that will later be decompressed/
recompressed, we recommend that you use a lower compression rate that is evenly
divisible by the ultimate planned compression rate for the output mosaic. This will
ensure optimum quality of your compressed mosaic. For example, if you plan to
compress the final mosaic at a target rate of 20:1, use a target rate of 10:1 or
perhaps 5:1 for the individual images that you are compressing. This way you still
reduce disk space significantly, but ensure that you lose very little quality in the
multi-compression process.

Compressing previously compressed images
The actual compression ratio is calculated using the original, uncompressed size of images that
have been previously saved in a compressed (e.g. 8-bit LZW) format. Therefore, it is possible that
the compressed ECW or JPEG 2000 image file might be larger than the input file. For example, if
we have a 2300x2300 RGB image, its uncompressed size would be 2300x2300x3=15MB. Using
8-bit LZW compression, the file size could be reduced to 800KB; i.e. 30 times smaller. If this file
was saved as a compressed ECW or JPEG 2000 image with an actual compression ratio of 25:1,
the output would be larger than the input 800KB file.

Note: The compressed ECW or JPEG 2000 image will still be faster to roam and zoom
over the Internet than an LZW compressed TIFF image file that is the same size or
even smaller, due to the special characteristics of progressive image retrieval from
an image compressed using wavelet technology.
ECW JPEG 2000 SDK - 53

Chapter 5 Development ● Compressing hyperspectral imagery
Compressing hyperspectral imagery
The ECW JPEG 2000 SDK is unique in that it will allow you to compress multi-band
hyperspectral imagery to one of two popular formats. To do this you must specify the
MULTIBAND compression format option before starting the compression process.

Image size limitations
ECW compression is more efficient when it is used to compress large image files. In the case of
extremely small images less than 128 x 128 pixels in size, the SDK will return an error message if
the application developer attempts to compress the data to the ECW format. No such minimum is
in place for compression to JPEG 2000 output and files as small as 1 x 1 pixel can be created using
this format. There is technically no upper limit on the size of images that can be compressed using
the SDK, but the free ECW JPEG 2000 Compressor, and applications created with the Limited
(free) version of the ECW JPEG 2000 SDK are limited to compressing images with file sizes that
are no larger than 500MB.

Compression directory limitations
ECW JPEG 2000 compression creates “.tmp” files in the output directory. These files contain
packet information, sometimes in very large numbers. If the output directory is accessed in
parallel with compression then this can degrade the performance of both the compression and the
operating system. A reboot may be required to recover the system. Tiled images are particularly
susceptible because the number of “.tmp” files generated is proportional to the number of tiles in
the image.

For compression, the default SDK parameters should be used whenever possible, unless your
application has specific requirements to deviate from the default parameters. Choosing
inappropriate compression parameters can impact compression detrimentally. In such cases, the
process of creating and deleting an excessive number of “.tmp” files could hinder the compression
substantially.

Guidelines for compression
JPEG 2000 compression creates temporary files in a created, randomly named subdirectory of the
output directory. These files contain packet information, and are sometimes (depending on the
compression parameters used) created in very large numbers. If this temporary directory is
accessed in parallel with compression this can degrade the performance of both the compression
and the operating system as a whole. Sometimes a reboot may be required to recover the system.
Tiled output images are particularly likely to cause this problem because the number of temporary
files created is proportional to the number of tiles in the image.When compressing, the default
SDK parameters should be used whenever possible, unless your application has a specific
requirement to deviate from the default parameters. Choosing inappropriate compression
parameters can have a detrimental effect both on the efficiency of compression and the usefulness
of the compressed file, and in most cases the SDK's default compression settings will produce best
case performance.
54 - ECW JPEG 2000 SDK

Chapter 5 Development ● Enabling unlimited compression
Enabling unlimited compression
If your application meets the criteria specified by either the Public (GNU General Public License
style) or Commercial Use License Agreements, you are free to enable compression to ECW and
JPEG 2000 files of unlimited size.

To enable unlimited compression, one of two steps must be taken in your application, depending
on whether you are using the C compression API or the C++ compression API.

If you are using the C API, you must statically link your application against the unlimited ECW
JPEG 2000 SDK compression library, which is called NCSEcwCu.lib on Windows platforms and
libNCSEcwCu.so on *NIX platforms.

If you are using the C++ API, the static method CNCSFile::SetKeySize() must be called prior
to each call of one of the overloaded CNCSFile::Open methods for write output. Make sure that
CNCSFile::SetKeySize() is called each time you want to write an output file of (potentially)
greater than 500MB in uncompressed size.
ECW JPEG 2000 SDK - 55

Chapter 5 Development ● Enabling unlimited compression
56 - ECW JPEG 2000 SDK

6

Examples
Compression examples

Compression example 1
This example program does not open any specific image for compression. Instead, the
ReadCallback() function assigns cell values of 0 or 1,000 to the ppInputArray[] variable,
thus creating a checker-board pattern. It then compresses this image to a file ‘output1.ecw’. The
compression parameters, entered into the compression client structure, *pClient are

Number of Bands: nInputBands 3

Image Width: nInOutSizeX 500 cells

Image Height: nInOutSizeY 200

Compression Format: eCompressFormat Set by number of bands:
1 band = Grayscale
3 band = RGB
Other = Multi-band
In this example, the band number is set to 3, so
the format will be RGB.

Target Compression Ratio: fTargetCompressi
on

Set by compression format:
Grayscale = 20
RGB = 10
Multi-band = 20
In this example, the target compression ratio
will be 10.

 Output File Name: szOutputFileName output1.ecw
ECW JPEG 2000 SDK - 57

Chapter 6 Examples ● Compression example 1
The pClient structure also has pointers to the following callback functions. These are called by
the ECW Compression Library function; NCSEcwCompress().

• ReadCallback() - For each line and band of the image, the ReadCallback()
function assigns cell values of 0 or 1000, creating a checkerboard pattern.

• StatusCallback() - This function determines which image line is being processed,
and displays this as the percentage complete.

• CancelCallback() - This function always returns a value of FALSE, so that the
compression is not cancelled.

At the end of the compression, the NCSEcwCompressClose() function enters the compression
statistics into the pClient structure:

SDK decompression library functions called
NCSEcwCompressAllocClient(void)
NCSEcwCompressOpen(NCSEcwCompressClient *pInfo, BOOLEAN bCalculateSizesOnly);
NCSEcwCompress(NCSEcwCompressClient *pInfo)
NCSEcwCompressClose(NCSEcwCompressClient *pInfo)
NCSEcwCompressFreeClient(NCSEcwCompressClient *pInfo)

Developer-defined functions called
ReadCallback(NCSEcwCompressClient *pClient UINT32 nNextLine, IEEE4 **ppInputArray)
StatusCallback(NCSEcwCompressClient *pClient, UINT32 nCurrentLine)
CancelCallback(NCSEcwCompressClient *pClient)

Program flow
1. Allocate a client structure and insert input dimensions and compression required:

if(pClient = NCSEcwCompressAllocClient())

2. Specify the callback functions and client data pointers:

pClient->pReadCallback = ReadCallback;
pClient->pStatusCallback = StatusCallback;
pClient->pCancelCallback = CancelCallback;
pClient->pClientData = (void*)&RI;

3. Open the compression:

eError = NCSEcwCompressOpen(pClient, FALSE);

Execute the compression:

Actual compression ratio: fActualCompression

Compression time in seconds: fCompressionSeconds\

Size of output compressed image: nOutputSize

Compression rate in MB per second: fCompressionMBSec
58 - ECW JPEG 2000 SDK

Chapter 6 Examples ● Compression example 2
eError = NCSEcwCompress(pClient);

4. Call the developer-defined callback functions for every input image line.

5. Close the compression and display the compression output statistics.

NCSEcwCompressClose(pClient);

6. Free the compression client structure:

NCSEcwCompressFreeClient(pClient);

Compression example 2
This example program accepts an ECW compressed image as input. The program decompresses
the image and then compresses it again. The compression parameters are extracted from the
NCSFileViewFileInfo structure *pNCSFileInfo, and entered into the compression client
structure. The Target Compression Ratio can be entered by the user as an argument or it will
default to that of the original compressed image.

The pClient structure also has pointers to the following callback functions. These are called by
the ECW Compression Library function; NCSEcwCompress().

• ReadCallback() - For each line and band of the image, the ReadCallback()
function assigns cell values of 0 or 1000, creating a checkerboard pattern.

• StatusCallback() - This function determines which image line is being processed,
and displays this as the percentage complete.

• CancelCallback() - This function always returns a value of FALSE, so that the
compression is not cancelled.

At the end of the compression, the NCSEcwCompressClose() function enters the compression
statistics into the pClient structure:

Number of Bands: nInputBands Same as input compressed image

Image Width: nInOutSizeX Same as input compressed image

Image Height: nInOutSizeY Same as input compressed image

Compression format: eCompressFormat Set by the number of bands in the compressed
image format:
1 band = grayscale
3 bands = RGB
Other= multi-band

Target compression ratio: fTargetCompression Same as that of the original compressed image
unless the
fTargetCompressionOverride
value is entered by the user.

Output file name: szOutputFileName As entered by the user.
ECW JPEG 2000 SDK - 59

Chapter 6 Examples ● Compression example 2
Actual compression ratio: fActualCompression
Size of output compressed image: nOutputSize
Compression time in seconds: fCompressionSeconds
Compression rate in MB per second: fCompressionMBSec

SDK compression library functions called
• NCScbmReadViewLineBIL(pReadInfo->pNCSFileView, pReadInfo-

>ppInputBandBufferArray);

• NCScbmOpenFileView(szInputFilename, &pNCSFileView, NULL);

• NCScbmGetViewFileInfo(pNCSFileView, &pNCSFileInfo);

• NCScbmSetFileView(pNCSFileView, pNCSFileInfo->nBands,
pBandList, 0, 0, pNCSFileInfo->

• nSizeX-1,

• pNCSFileInfo->nSizeY-1, pNCSFileInfo->nSizeX, pNCSFileInfo-
>nSizeY);

SDK decompression library functions called
• pClient = NCSEcwCompressAllocClient()

• NCSEcwCompressOpen(pClient, FALSE);

• NCSEcwCompress(pClient);

• NCSEcwCompress(pClient);

• NCSEcwCompressFreeClient(pClient)

Other SDK library functions called
• ReadCallback(NCSEcwCompressClient *pClient, UINT32 nNextLine,

IEEE4 **ppOutputBandBufferArray)

• StatusCallback(NCSEcwCompressClient *pClient, UINT32
nCurrentLine)

• CancelCallback(NCSEcwCompressClient *pClient)

Program flow
1. Open an existing compressed image file:

eError = NCScbmOpenFileView(szInputFilename, &pNCSFileView, NULL);

2. Get information from the compressed image file to set up a band list:

eError = NCScbmGetViewFileInfo(pNCSFileView, &pNCSFileInfo);

3. Set the decompressed file view to encompass the whole image:

eError = NCScbmSetFileView(pNCSFileView,
pNCSFileInfo->nBands, pBandList, 0, 0,
pNCSFileInfo->nSizeX-1, pNCSFileInfo->nSizeY-1,
pNCSFileInfo->nSizeX, pNCSFileInfo->nSizeY);

4. Allocate a client compression structure:
60 - ECW JPEG 2000 SDK

Chapter 6 Examples ● Compression example 3
if(pClient = NCSEcwCompressAllocClient())

5. Insert input dimensions from the decompressed image information, and the required
compression.

6. Specify the callback functions and client data pointers:

pClient->pReadCallback = ReadCallback;
pClient->pStatusCallback = StatusCallback;
pClient->pCancelCallback = CancelCallback;

7. Set up client data for the read callback function:

pClient->pClientData = (void *)&CompressReadInfo;

8. Open the compression:

eError = NCSEcwCompressOpen(pClient, FALSE);

9. Do the compression:

eError = NCSEcwCompressOpen(pClient, FALSE);

10. For every input image line call the developer-defined callback functions. The read callback
function calls the decompression library Read function to enter the raster data into an array of
input buffers:

eReadStatus = NCScbmReadViewLineBIL(pReadInfo->pNCSFileView,
pReadInfo->ppInputBandBufferArray);

11. Convert the raster data to IEE4 and store it in an array of output buffers:

for (nCell = 0; nCell < pClient->nInOutSizeX; nCell++) {
*pOutputValue++ = (IEEE4)*pInputValue++;}

12. Close the compression and display the compression output statistics:

NCSEcwCompressClose(pClient);
13. Free the compression client structure:

NCSEcwCompressFreeClient(pClient);

Compression example 3
This example program recompresses an input ECW or JPEG 2000 file to lossless JPEG 2000
using the C++ compression API. It provides a useful demonstration of the ease of use of this API
for configuring JPEG 2000 output.

Number of Bands: nInputBands Same as input compressed image

Image Height: nInOutSizeY Same as input compressed image

Compression format: eCompressFormat Set by the number of bands in the compressed
image format:
1 band = grayscale
3 bands = RGB
Other= multi-band

Target compression ratio: fTargetCompression 1:1 forcing lossless JPEG 2000 output if a
“.jp2” output filename is selected.

Output file name: szOutputFileName As entered by the user - use “.jp2” extension
to choose JPEG 2000 output.
ECW JPEG 2000 SDK - 61

Chapter 6 Examples ● Compression example 3
Unlike the ECW format, the JPEG 2000 file format now supported by the ECW JPEG 2000 SDK
v3.3 allows for lossless compression, meaning that data sources to be used for high-precision
purposes can be compressed in such a way that perfect reconstruction of the compressed image is
possible. When using JPEG 2000 compression specifying a target compression ratio of 1:1 creates
lossless output, although the actual compression ratio achieved will generally be higher, in the
order of 2:1 or more. Lossless JPEG 2000 files interoperate transparently with lossy JPEG 2000
files in a decoding environment compliant with the ISO JPEG 2000 standard.

The recommended methodology when using the C++ API of the ECW JPEG 2000 SDK is to
subclass the CNCSFile or CNCSRenderer classes and override certain functions to meet the
specific needs of your application. In compression Example 3, the CNCSFile class is subclassed
by CLosslessCompressor, which overrides the methods of CNCSFile associated with a
compression process to do its job.

CNCSFile methods reimplemented by CLosslessCompressor
CNCSFile::WriteReadLine(UINT32 nNextLine, void **ppInputArray);

The overridden version of WriteReadLine is the cornerstone of the CLosslessCompressor
class. WriteReadLine is the function called by the SDK to obtain new input data for
compression during the execution of a compression task. In this case, the input data is being
obtained from an ECW or JPEG 2000 file using the SDK itself, so only a simple call to
ReadLineBIL on the input file is required.

CNCSFile::WriteStatus(UINT32 nCurrentLine);
CNCSFile::WriteCancel();

The two methods WriteStatus and WriteCancel can be overridden to manage the interaction
of an SDK application with a compression task. In the case of WriteStatus, the SDK calls the
method for each scanline of input data read during compression, and since the scanline number is
provided as an argument to the method, it can be used to update progress bars or other status
indicators in your program.

Other CNCSFile methods used
CNCSFile::Open(char *pFilename, BOOLEAN bProgressive, BOOLEAN bWrite);
CNCSFile::GetFileInfo();
CNCSFile::SetView(UINT32 nBands, INT32 *pBandList,
INT32 nSizeX, INT32 nSizeY,
IEEE8 fStartX, IEEE8 fStartY,
IEEE8 fEndX, IEEE8 fEndY);
CNCSFile::SetFileInfo(NCSFileViewFileInfoEx &pInfo);
CNCSFile::Write();
CNCSFile::Close(BOOLEAN bFreeCachedFile);

Program flow
Most of the work to code this simple SDK application can be seen in the
CLosslessCompressor::Recompress method. The main function simply parses input
arguments (in this case, input and output filenames), instantiates a CLosslessCompressor
object, and calls its Recompress method. Within Recompress we can see the following chain of
method calls:
62 - ECW JPEG 2000 SDK

Chapter 6 Examples ● Compression example 3
1. The Open method is called on the m_Src member of the CLosslessCompressor object,
which is itself an instance of CNCSFile used to handle input from another ECW or JPEG 2000
file.

2. The GetFileInfo method is called on m_Src to query it for metadata, allowing us to set up
our output parameters correctly.

3. The file metadata obtained is used to set a view of maximal extents on the input file, so that its
entire contents can be read line by line into the output file. These extents are used as arguments to
the corresponding call to SetView on m_Src.

4. The output target compression ratio is set to 1, specifying lossless JPEG 2000 in the case of
JPEG 2000 output.

5. Since there are no other changes required to the output metadata, a call to SetFileInfo is
made on the CLosslessCompressor object, specifying output parameters.

6. The CLosslessCompressor is opened with a call to Open. Note the arguments of Open
which indicate that the output file should be opened in non-progressive mode for writing.

7. Output to file begins with a call to Write on the CLosslessCompressor object. This initiates
a series of calls to WriteReadLine, WriteStatus and WriteCancel on the
CLosslessCompressor object (one for each input scanline) as the SDK creates compressed
output.

8. The output file is closed with a call to Close.
ECW JPEG 2000 SDK - 63

Chapter 6 Examples ● Decompression examples
Decompression examples

Decompression example 1
The Example1.exe program uses the Blocking Reads Interface to the ECW library. To build the
program, ensure that your Visual C++ option settings are correct. Open the workspace file
samples\example1\Example1.dsw and build either the debug or release version of
Example1.exe.

SDK decompression library functions called
• NCScbmOpenFileView(szInputFilename, &pNCSFileView, NULL)

• NCScbmGetViewFileInfo(pNCSFileView, &pNCSFileInfo)

• NCScbmSetFileView(pNCSFileView, nBands, band_list, start_x,
start_y, end_x, end_y, number_x, number_y)

• NCScbmReadViewLineBIL(pNCSFileView, p_p_output_line)

• NCScbmCloseFileView(pNCSFileView)

• NCScbmCloseFileViewEx(pNCSFileView, FALSE)

Program flow
1. Open the file view and get image information:

NCScbmOpenFileView(); // open a view into a file
NCScbmGetViewFileInfo(); // get image size, map project info,

// etc

2. Repeat the following routine as many times as required for different views:

while(/* read a new view */) {
NCScbmSetFileView(); // set a view bands, extents,
// and window size
while(lines--) { // read lines from the view
// you can abort at any time if you don’t
// want to read all lines
// (perhaps because the user wants a new
// view)
NCScbmReadViewLineRGB(); // or BIL or BGR read
/* and give the line back to the application */
}
}
3. Finish working with this file:

NCScbmCloseFileViewEx() // all done

Decompression example 2
The Example2.exe program is an example of a Callback based interface to the ECW library.
64 - ECW JPEG 2000 SDK

Chapter 6 Examples ● Decompression example 3
To build the program make sure that your Visual C++ option settings are as specified in Chapter 5,
“Development environment”. Open the workspace file samples\example2\Example2.dsw and
build either the debug or release version of Example2.exe. The C source code file is
ecw_example2.c.

SDK decompression library functions called
• NCScbmOpenFileView(pMyView->szInputFilename, &pMyView-

>pNCSFileView, ShowViewCallback)

• NCScbmGetViewFileInfo(pMyView->pNCSFileView, &pMyView-
>pFileInfo)

• NCScbmGetViewInfo(pMyView->pNCSFileView, &pMyView-
>pViewInfo)

• NCScbmSetFileView(pMyView->pNCSFileView, nBands,pMyView-
>pBandList, pMyView-nFromX, pMyView->nFromY, pMyView->nToX,
pMyView->nToY, pMyView->nViewSizeX, pMyView->nViewSizeY)

• NCScbmCloseFileView(pMyView->pNCSFileView)

• NCScbmReadViewLineRGB(pNCSFileView, pRGBTriplets)

Program flow
1. Open the file view and get image information:

NCScbmOpenFileView();// open a view into a file
// specify ShowViewCallback() as routine to
//read the views NCScbmGetViewFileInfo();
// get image size, map project info,
// etc NCScbmViewInfo();
// get the current Setview information

2. Do the following for nSetViews (simulating user input):

while(/* <nSetViews */) { NCScbmSetFileView(); // set a view bands, extents,
// and window size ShowViewCallback()
{// read when necessary NCScbmReadViewLineRGB();
// or BIL or BGR read
// and give the line back to the application }}

3. Finish working with this file: NCScbmCloseFileView()// all done

Decompression example 3
The Example3.exe program shows you how you can use the NCSRenderer class to open, save as
a JPEG, and display an ECW compressed image. To build the program make sure that your Visual
C++ option settings are as specified in Chapter 5, “Development environment”. Open the
workspace file samples\example3\Example3.dsw and build either the debug or release version of
Example3.exe. The C source code file is ecw_example3.c.

CNCSRenderer methods used
• Open((char*)lpszPathName, m_bIsProgressive)

• ConvertDatasetToWorld(0, 0, &m_dTLX, &m_dTLY)
ECW JPEG 2000 SDK - 65

Chapter 6 Examples ● Decompression example 3
• ConvertDatasetToWorld(nScreenWidth-1, nScreenHeight-
1,&m_dBRX, &m_dBRY)

• SetView(pDoc->m_nNumberOfBands, pBandsArray,
m_nWindowWidth,m_nWindowHeight,m_dTLX,m_dTLY m_dBRX m_dBRY)

• ReadImage(pViewSetInfo); •ReadImage(m_nWindowWidth,
m_nWindowHeight)

• DrawImage(pDC->m_hDC, &m_Rect, m_dTLX, m_dTLY, m_dBRX,
m_dBRY)

• WriteJPEG(filename, quality)

Program flow
1. Display Main Frame dialog with standard menus and toolbar.

2. Display ‘Open’ dialog when the user selects File -> Open. The standard Open dialog has an
additional ‘IDD_NCS_URL_DIALOG’ dialog for the user to enter a URL instead of a path and file
name. The user can also select an option for the image to be progressively updated.

3. Retrieve the initial filename and/or URL values from the preferences settings.

4. When the user clicks the ‘Open’ or ‘Open URL’ button, get the path and file name and the
progressive setting, set the preferences for the nest time, and close the ‘Open’ dialog.

5. Use the following NCSRenderer method to open the selected image with the desired
progressive update setting:

eError = Open((char*)lpszPathName, m_bIsProgressive);
if (eError == NCS_SUCCESS) {
m_bHaveOpenECW = TRUE;
}

6. Set the required view as follows:

pDoc->ConvertDatasetToWorld(0, 0, &m_dTLX, &m_dTLY);
pDoc->ConvertDatasetToWorld(nScreenWidth-1, nScreenHeight-1,
&m_dBRX, &m_dBRY);
if(pBandsArray = (INT32*)
NCSMalloc(pDoc->m_nNumberOfBands * sizeof(INT32),
FALSE)) {
INT32 i;
for(i = 0; i < pDoc->m_nNumberOfBands; i++) {
pBandsArray[i] = i;
}
eError = pDoc->SetView(pDoc->m_nNumberOfBands,
pBandsArray, m_nWindowWidth, m_nWindowHeight,
m_dTLX, m_dTLY m_dBRX,m_dBRY);
NCSFree(pBandsArray);
}

7. For progressive display, read the image every refresh update event.

eError = ReadImage(pViewSetInfo);
66 - ECW JPEG 2000 SDK

Chapter 6 Examples ● Decompression example 3
8. Otherwise read it once:

ReadImage(m_nWindowWidth, m_nWindowHeight);

9. Draw the image on the screen.

pDoc->DrawImage(pDC->m_hDC, &m_Rect, m_dTLX, m_dTLY,m_dBRX,
m_dBRY);

10. To save an image as a JPEG file three steps must be followed:

• First, the ECW image must be open in non-progressive mode.

• Second, SetView must be called to set the region to be saved as a JPEG.

• Finally WriteJPEG is called to write the JPEG file:
NCSError eError = Open((char*)strFilename.GetBuffer(0), FALSE);
pView->SetView();
WriteJPEG(strJPGName.GetBuffer(0), 50);

Program

This example provides the user with an ‘Open File’ dialog to select either the file name or URL
for an ECW compressed image.
ECW JPEG 2000 SDK - 67

Chapter 6 Examples ● Decompression example 4
1. Add three dialog boxes:
• IDD_ABOUTBOX About Example3 dialog.

• IDD_NCS_URL This dialog is attached to the standard File Open dialog to enable the
user to enter a URL to select the image.

• IDR_MAINFRAME A standard main frame with toolbars and menus.

2. Create the following classes:
• CAboutDialog

• CExample3App

• CExample3Doc

• CExample3View

• CMainFrame

• CNCSFileDialog

3. Edit the modules.

Decompression example 4
The Example4.exe program demonstrates the use of the NCSecwSetIOCallbacks() interface
to the ECW library. To build the program make sure that your Visual C++ option settings are as
specified in Chapter 5, “Development environment”. Open the workspace file
samples\example4\Example4.dsw and build either the debug or release version of
Example4.exe.

SDK decompression library functions called
• NCSecwInit()

• NCSecwSetIOCallbacks(FileOpenCB, FileCloseCB, FileReadCB,
FileSeekCB, FileTellCB)

• NCScbmOpenFileView(argv[1], &pNCSFileView, NULL)

• NCScbmGetViewFileInfo(pNCSFileView, &pNCSFileInfo)

• NCScbmSetFileView(pNCSFileView, nBands, Bands, nTLX, nTLY,
nBRX, nBRY, nWidth, nHeight)

• NCScbmReadViewLineRGB(pNCSFileView, pRGBTriplets)

• NCScbmCloseFileView(pNCSFileView)

• NCSecwShutdown()

Program flow
1. Set up the callbacks.

NCSecwSetIOCallbacks()
68 - ECW JPEG 2000 SDK

Chapter 6 Examples ● Example listings
2. Open a view into a file and get image info.

NCScbmOpenFileView()//open a view into a file
NCScbmGetViewFileInfo() //get image size, map projection
//info, etc

3. Set the view.

NCScbmSetFileView() //set a view bands, extents and window
//size
For (nLine = 0; nLine < nHeight; nLine++) { //Read all
//scanlines

4. Read RGB view.

NCScbmReadViewLineRGB() //RGB read
For (nCell = -0; nCell < nWidth; Ncell++) { // dump RGB
//triplets to
//screen as HEX

5. Close the file view

NCScbmCloseFileView()

Example listings
See the example code included with the SDK distribution.
ECW JPEG 2000 SDK - 69

Chapter 6 Examples ● Example listings
70 - ECW JPEG 2000 SDK

7

API reference
This section contains descriptions of the essential functions and classes you’ll be working with in
the ECW JPEG 2000 SDK. There are two methodologies that can be employed when writing
applications based on the SDK, one of which uses C language functions in a procedural way, and
the other of which uses file-oriented C++ objects. Throughout this section these two paradigms are
referred to using the terms “C API” and “C++ API”. In addition to the functions, classes, methods
and data structures documented here that fall under the umbrellas of the C and C++ APIs, some
further utility functions that will be of benefit to you when programming with the ECW JPEG
2000 SDK are also documented.
ECW JPEG 2000 SDK - 71

Chapter 7 API reference ● C API: decompression functions

P

P

C API: decompression functions
The ECW JPEG 2000 decompression library (NCSEcw.lib) has been designed for simplicity and
ease of use. There are only nine functions and two data structures in the API. Together they allow
you to open a view into an image file, set the extents of the view interactively, read the image data
in a variety of different ways that can be called for opening an image file view, setting the view,
reading the data and then closing the view at the end.

You can also select either of two interfaces to the library; ‘blocking’ or ‘refresh callback’:

• Blocking: when you are using the blocking interface, the application simply opens the view,
reads the view, reads another view, and so on until it closes the view.

• Refresh Callback: when you are using the refresh callback interface, the application opens
the view, and the view extents are then reset whenever appropriate (e.g. in response to user
input). The library calls back to the application whenever new image data is available for
reading.

There are separate functions to call depending on whether your application will read each line of
every band in the image (in BIL format) or will return a straight RGB or BGR or other image
regardless of what is in the source file The C functions required to decompress image data from
ECW and JPEG 2000 files are documented below:

NCScbmCloseFileView
NCSError NCScbmCloseFileView(NCSFileView *pNCSFileView)

NCScbmCloseFileViewEx
NCSError NCScbmCloseFileViewEx(NCSFileView *pNCSFileView,

BOOLEAN bFreeCachedFile)

Remarks: Closes an open view. You can do this at any time after a call to NCScbmOpenFileView().

arameters: NCSFileView *pNCSFileView The file view to close.

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: nError = NCScbmCloseFileView (pMyView->pNCSFileView);
if (nError != NCS_SUCCESS)

printf(“Error = %s\n”, NCSGetErrorText(nError));

Remarks: This function is similar to NCScbmCloseFileView() in that it also closes a file view. The only
difference between this and the non-Ex call is that you can force it to close the file by passing in TRUE
for bFreeCachedFile. It behaves exactly the same as NCScbmCloseFileView() if you pass
in FALSE for bFreeCachedFile. The file only closes when all the views for that file are closed (a
single file may have multiple views open on it at any given time.

arameters: NCSFileView *pNCSFileView The file view to close.
BOOLEAN bFreeCachedFile Set to TRUE to force closure of the file and the release of
associated memory.
72 - ECW JPEG 2000 SDK

Chapter 7 API reference ● C API: decompression functions

P

P

P

NCScbmGetViewFileInfo
NCSError NCScbmGetViewFileInfoEx(NCSFileView *pNCSFileView,
NCSFileViewFileInfoEx **ppNCSFileViewFileInfo)

NCScbmGetViewFileInfoEx
NCSError NCScbmGetViewFileInfoEx(NCSFileView *pNCSFileView,
NCSFileViewFileInfoEx **ppNCSFileViewFileInfo)

NCScbmGetViewInfo
NCSError NCScbmGetViewInfo(NCSFileView *pNCSFileView,

NCSFileViewSetInfo **ppNCSFileViewSetInfo)

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: NCScbmCloseFileViewEx(pNCSFileView, TRUE);

Remarks: Obtains generic information about the image file associated with an open file view. No information
specific to a call of NCScbmSetFileView is available via this call. To obtain such information use
NCScbmGetViewInfo(). Use this call in conjunction with a view on an open ECW file.

arameters: NCSFileView *pNCSFileView The file view to close.
NCSFileViewFileInfo **ppNCSFileViewFileInfo Non view-specific file information.

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: nError = NCScbmGetViewFileInfo(pMyView->pNCSFileView,&pMyView-
>pFileInfo);

if (nError != NCS_SUCCESS)
printf(“Error = %s\n”, NCSGetErrorText(nError));

Remarks: Obtains generic information about the image file associated with an open file view. No information
specific to a call of NCScbmSetFileView is available via this call. To obtain such information use
NCScbmGetViewInfo(). Use this call in conjunction with a view on an open JPEG 2000 file.

arameters: NCSFileView *pNCSFileView The file view to close NCSFileViewFileInfoEx.
**ppNCSFileViewFileInfoEx Non view-specific file information.

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: nError = NCScbmGetViewFileInfoEx(pMyView->pNCSFileView,
&pMyView->pFileInfo);

if (nError != NCS_SUCCESS)
printf(“Error = %s\n”, NCSGetErrorText(nError));

Remarks: Gets view information about the view data currently being processed.

arameters: NCSFileView *pNCSFileView The file view to close.
NCSFileViewSetInfo **ppNCSFileViewSetInfo Current Setview information,
ECW JPEG 2000 SDK - 73

Chapter 7 API reference ● C API: decompression functions

P

P

NCScbmOpenFileView
NCSError NCScbmOpenFileView(char *szUrlPath,
NCSFileView **ppNCSFileView,
NCSEcwReadStatus (*pRefreshCallback)(NCSFileView *pNCSFileView))

NCScbmReadViewLineBGR
NCSEcwReadStatus NCScbmReadViewLineBGR(NCSFileView *pNCSFileView,

UINT8 *pRGBTriplets)

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: NCScbmGetViewInfo(pMyView->pNCSFileView, &pMyView->pViewInfo);

Remarks: Opens a File View. After doing this, you can call NCScbmGetViewFileInfo() to get the file
details.

arameters: char *szUrlPath Name of the file to be opened. This can also be an ecwp:// URL.
NCSFileView *pNCSFileView The file view.
NCSEcwReadStatus (*pRefreshCallback) (NCSFileView *pNCSFileView)
Routine called by the library whenever the view needs to be refreshed, based on the available imagery
information. Set this to NULL if you are not using the refresh callback interface.

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: //Simple Read Region Interface
eError = NCScbmOpenFileView(szInputFilename, &pNCSFileView, NULL);
if (nError != NCS_SUCCESS)

printf(“Error = %s\n”, NCSGetErrorText(nError));
//Interactive Callback interface
NCScbmOpenFileView(pMyView->szInputFilename,

&pMyView->pNCSFileView,ShowViewCallback);

Remarks: Reads line by line in BGR format.

arameters: NCSFileView *pNCSFileView The file view from which to read.
UINT8 *pRGBTriplets A buffer for the RGB triplets being read.

Returns: NCSEcwReadStatus, one of:
• NCSECW_READ_OK = 0, read was successful
• NCSECW_READ_FAILED = 1, read failed due to an error
• NCSECW_READ_CANCELLED = 2, read was cancelled, due to:

• The application moving to process a new SetView, or
• library shutdown in progress

Example: NCScbmReadViewLineBGR(pNCSFileView, pRGBTriplets);
74 - ECW JPEG 2000 SDK

Chapter 7 API reference ● C API: decompression functions

P

P

NCScbmReadViewLineBGRA
NCSEcwReadStatus NCScbmReadViewLineBGRA(NCSFileView *pNCSFileView,

UINT32 *pRGBA)

NCScbmReadViewLineBIL
NCSEcwReadStatus NCScbmReadViewLineBIL(NCSFileView *pNCSFileView,

UINT8 **ppOutputLine)

Remarks: Reads line by line in BGRA format, packed into 32bits with 8 bits each for Red, Green, Blue and
Alpha. The alpha band contains only zero values, and this function is provided solely for
interoperability with graphics software that uses alpha blending and a compatible pixel value data
structure.

arameters: NCSFileView *pNCSFileView The file view.
UINT32 *pBGRA A pointer to a UINT32 buffer for BGRA values being read.

Returns: NCSEcwReadStatus, one of:
• NCSECW_READ_OK = 0, read was successful
• NCSECW_READ_FAILED = 1, read failed due to an error
• NCSECW_READ_CANCELLED = 2, read was cancelled, due to:

• The application moving to process a new SetView, or
• library shutdown in progress

Example: NCScbmReadViewLineBGRA(pNCSFileView, pBGRA);

Remarks: Reads line by line in BIL format.

arameters: NCSFileView *pNCSFileView The file view.
UINT8 **ppOutputLine A buffer passed in to store the BIL data read by the call.

Returns: NCSEcwReadStatus, one of:
• NCSECW_READ_OK = 0, read was successful
• NCSECW_READ_FAILED = 1, read failed due to an error
• NCSECW_READ_CANCELLED = 2, read was cancelled, due to:

• The application moving to process a new SetView, or
• library shutdown in progress

Example: eReadStatus = NCScbmReadViewLineBIL(pNCSFileView,ppOutputLine);
if (eReadStatus != NCSECW_READ_OK)

printf(“Status code = %e\n”, eReadStatus);
ECW JPEG 2000 SDK - 75

Chapter 7 API reference ● C API: decompression functions

P

P

NCScbmReadViewLineBILEx
NCSEcwReadStatus NCScbmReadViewLineBILEx(NCSFileView *pNCSFileView,
NCSEcwCellType eType,

UINT8 **ppOutputLine)

NCScbmReadViewLineRGB
NCSEcwReadStatus NCScbmReadViewLineRGB(NCSFileView *pNCSFileView,

UINT8 *pRGBTriplets)

Remarks: Read line by line in BIL format to buffers with different cell types. This extended version
allows the client program to read in view lines made up of cells with sample bitdepth other
than 8 bit.

arameters: NCSFileView *pNCSFileView The file view.
NCSEcwCellType eType The sample type of the buffer into which to read BIL pixel data.
UINT8 **ppOutputLine A buffer passed in to store the BIL data read by the call.

Returns: NCSEcwReadStatus, one of:
• NCSECW_READ_OK = 0, read was successful
• NCSECW_READ_FAILED = 1, read failed due to an error
• NCSECW_READ_CANCELLED = 2, read was cancelled, due to:

• The application moving to process a new SetView, or
• library shutdown in progress

Example: eReadStatus = NCScbmReadViewLineBILEx(pNCSFileView, NCSCT_UINT16,
ppOutputLine);

if (eReadStatus != NCSECW_READ_OK)
printf(“Status code = %e\n”, eReadStatus);

Remarks: Reads line by line in RGB format.

arameters: NCSFileView *pNCSFileView The file view
UINT8 *pRGBTriplets RGB triplets being read

Returns: NCSEcwReadStatus, one of:
• NCSECW_READ_OK = 0, read was successful
• NCSECW_READ_FAILED = 1, read failed due to an error
• NCSECW_READ_CANCELLED = 2, read was cancelled, due to:

• The application moving to process a new SetView, or
• library shutdown in progress

Example: eReadStatus = NCScbmReadViewLineRGB(pNCSFileView, pRGBTriplets);
if(eReadStatus == NCSECW_READ_CANCELLED)

printf(“*** Read was cancelled.\n”);
76 - ECW JPEG 2000 SDK

Chapter 7 API reference ● C API: decompression functions

P

P

NCScbmReadViewLineRGBA
NCSEcwReadStatus NCScbmReadViewLineRGBA(NCSFileView *pNCSFileView,

UINT32 *pRGBA)

NCScbmSetFileView
NCSError NCScbmSetFileView(NCSFileView *pNCSFileView,

UINT32 nBands,
UINT32 *pBandList,
UINT32 nTLX, UINT32 nTLY,
UINT32 nBRX, UINT32 nBRY,
UINT32 nSizeX, UINT32 nSizeY)

Remarks: Reads line by line in RGBA format, packed into 32 bits with 8 bits each for Red, Green, Blue and
Alpha. The alpha band contains only zero values, and this function is provided solely for
interoperability with graphics software that uses alpha blending and a compatible pixel value data
structure.

arameters: NCSFileView *pNCSFileView The file view.
UINT32 *pRGBA A pointer to UINT32 buffer for RGBA values being read.

Returns: NCSEcwReadStatus, one of:
• NCSECW_READ_OK = 0, read was successful
• NCSECW_READ_FAILED = 1, read failed due to an error
• NCSECW_READ_CANCELLED = 2, read was cancelled, due to:

• The application moving to process a new SetView, or
• library shutdown in progress

Example: NCScbmReadViewLineRGBA(pNCSFileView, pRGBA);

Remarks: Sets the extents and image components associated with an open file view. You can do this at any time
after a call to NCScbmOpenFileView. Multiple SetFileViews can be done, even if previous
SetFileViews have not finished processing yet. After the call to NCScbmSetFileView is
made, you can free the bandlist (pBandList) if you wish - it is used only during the call, and not
afterwards.
You can specify the view to be part of the image by setting the required number of bands and the top
left and bottom right coordinates of an area within the image.

arameters: NCSFileView *pNCSFileView The file view.
UINT32 nBands The number of bands to read.
UINT32 *pBandList The index into the actual band numbers from the source file. Band
numbering starts at 0.
UINT32 nTLX
UINT32 nTLY The top left of the view in dataset coordinates.
UINT32 nBRX
UINT32 nBRY The bottom right of the view in dataset coordinates.
UINT32 nSizeX
UINT32 nSizeY The view size in dataset cells.
ECW JPEG 2000 SDK - 77

Chapter 7 API reference ● C API: decompression functions

P

NCScbmSetFileViewEx
NCSError NCScbmSetFileViewEx(NCSFileView *pNCSFileView,

UINT32 nBands,
UINT32 *pBandList,
UINT32 nTLX, UINT32 nTLY,
UINT32 nBRX, UINT32 nBRY,
UINT32 nSizeX, UINT32 nSizeY,
IEEE8 fTLX, IEEE8 fTLY,
IEEE8 fBRX, IEEE8 fBRY))

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: eError = NCScbmSetFileView(pNCSFileView, nBands, pBandList,
nStartX, nStartY, nEndX, nEndY,
nNumberX, nNumberY);

if(eError != NCS_SUCCESS)
printf(“Error = %s\n”, NCSGetErrorText(nError));

Remarks: This is similar to the NCScbmSetFileView function, with the added possibility of passing in the
real world coordinates, so that you know what they are in your refresh callback function. This is
necessary where dataset cells are rounded based on the current scale, but you need the exact world
coordinates in the callback function for some reason.
Note: You can specify the view to be part of the image by setting the required number of bands and

the top left and bottom right coordinates of an area within the image.

arameters: NCSFileView *pNCSFileView The file view.
UINT32 nBands The number of bands to read.
UINT32 *pBandList The index into the actual band numbers from the source file. Band

numbering starts at 0.
UINT32 nTLX
UINT32 nTLY The top left of the view in dataset coordinates.
UINT32 nBRX
UINT32 nBRY The bottom right of the view in dataset coordinates.
UINT32 nSize
UINT32 nSizeY The view size in raster cells.
IEEE8 fTLX
IEEE8 fTLY The top left of the view in world coordinates.
IEEE8 fBRX
IEEE8 fBRY The bottom right of the view in world coordinates.

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: NCScbmSetFileViewEx(pNCSFileView, nBands, pBandList,
nStartX, nStartY, nEndX, nEndY, nNumberX, nNumberY,
fStartWorldX, fStartWorldY, fEndWorldX, fEndWorldY);
78 - ECW JPEG 2000 SDK

Chapter 7 API reference ● C API: decompression functions

P

NCSecwSetConfig
NCSError NCSecwSetConfig(NCSEcwConfigType eType, ...)

The desired value(s) of configuration parameters, as below:

Remarks: Set an ECW decompression configuration parameter.

arameters: NCSEcwConfigType eType The ECW configuration parameter to set.

Parameter Argument Type Notes

NCSCFG_TEXTURE_DITHER BOOLEAN Apply texture dither to decompressed image

NCSCFG_FORCE_FILE_REOP
EN

BOOLEAN Force each individual view to open a separate
file/connection.

NCSCFG_CACHE_MAXMEM UINT32 TARGET maximum memory to use for ECW
cache, in bytes.

NCSCFG_CACHE_MAXOPEN UINT32 TARGET maximum number of open files to use
for ECW cache.

NCSCFG_MAX_PROGRESSIVE
_VIEW_SIZE

UINT32 Maximum height or width of a file view set in
progressive read mode.

Returns: NCSError, one of:
NCS_SUCCESS = 0, call to set configuration was successful.
Error value from NCSError.h, specific error setting configuration parameter.

Example: NCSecwSetConfig(NCSCFG_FORCE_FILE_REOPEN, (BOOLEAN)TRUE);
ECW JPEG 2000 SDK - 79

Chapter 7 API reference ● C API: decompression functions

P

NCSecwSetIOCallbacks
NCSError NCSecwSetIOCallbacks(
NCSError (NCS_CALL *pOpenCB)(char *szFileName, void **ppClientData),
NCSError (NCS_CALL *pCloseCB)(void *pClientData), *pClientData),
NCSError (NCS_CALL *pReadCB)(void *pClientData,

void *pBuffer, UINT32 nLength),
NCSError (NCS_CALL *pSeekCB)(void *pClientData, UINT64 nOffset),
NCSError (NCS_CALL *pTellCB)(void *pClientData, UINT64 *pOffset))

Remarks: An API call which allows an application to specify callback functions to be used for ECW file I/O
instead of the built-in functions. This allows embedding of ECW files into another file, a database etc.,
without requiring extracting to a temporary file before opening via the SDK.
Note: Callback routines should be coded to handle 64-bit file sizes.

arameters: pOpenCB Callback function for opening files.
pCloseCB Callback for closing files.
pReadCB Callback for reading from files.
pSeekCB Callback for seeking in files.
pTellCB Callback for determining the location of the current file pointer in the

file.

Returns: Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the
operation succeeds.

Example: Decompression example 4 demonstrates the use of I/O callbacks.
80 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Decompression: Related Data Structures
Decompression: Related Data Structures
When decompressing data from an ECW or JPEG 2000 file, it is a natural requirement to be able
to request information about the file, such as its size in pixels, number of components, or
geographic location. This information allows an application to correctly allocated resources for the
decompressed data and process it in an appropriate way.

The ECW JPEG 2000 SDK makes two kinds of information available to a client program upon
opening a view into an ECW or JPEG 2000 file. The first kind is generic information about the
image compressed in the file, which remains constant regardless of the characteristics of the
current view being processed. The second kind is information specific to the view currently being
processed, such as its extents, and the amount of view data available. Different functions are
provided in the C and C++ APIs for accessing the two different kinds of information. The
information returned to the client program is stored in data structures called
NCSFileViewFileInfo, NCSFileViewFileInfoEx, and NCSFileViewSetInfo.
ECW JPEG 2000 SDK - 81

Chapter 7 API reference ● Decompression: Related Data Structures

P

NCSFileViewFileInfo
typedef struct
{

UINT32 nSizeX, nSizeY;
UINT16 nBands;
UINT16 nCompressionRate;
CellSizeUnits eCellSizeUnits;
IEEE8 fCellIncrementX;
IEEE8 fCellIncrementY;
IEEE8 fOriginX;
IEEE8 fOriginY;
char *szDatum;
char *szProjection;

}NCSFileViewFileInfo

Remarks: The NCSFileViewFileInfo structure contains all the static file information associated
with an open ECW file view. The NCScbmGetViewFileInfo() function returns a pointer
to this structure.

arameters: nSizeX, nSizeY Image size in number of raster cells.
nBands Number of bands in the file, e.g. 3 for an RGB image file.
nCompressionRateApproximate compression rate. May be zero. e.g. 20 = 20:1 compression.
eCellSizeUnits Units used for raster cell size. This can be one of the following (set to 1 for

RAW type files):
ECW_CELL_UNITS_INVALID = 0,
ECW_CELL_UNITS_METERS = 1,
ECW_CELL_UNITS_DEGREES = 2,
ECW_CELL_UNITS_FEET = 3

fCellIncrementX Cell size across in CellSizeUnits. May be negative, but never zero.
fCellIncrementY Cell size down in CellSizeUnits. May be negative, but never zero.
fOriginX World X coordinate for topleft corner of top left cell, in CellSizeUnits.
fOriginY World Y coordinate for topleft corner of top left cell, in CellSizeUnits.
szDatum ER Mapper style Datum name string, e.g. “RAW” or “NAD27”. Will never be

NULL.
szProjection ER Mapper style Projection name string, e.g. “RAW” or “WGS84”. Will

never be NULL.
82 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Decompression: Related Data Structures

P

NCSFileViewFileInfoEx
typedef struct
{

//Members of NCSFileViewFileInfo
...
//Additional data
IEEE8 fCWRotationDegrees;
NCSFileColorSpace eColorSpace;
NCSEcwCellType eCellType;
NCSFileBandInfo *pBands;

}
NCSFileViewFileInfoEx;

Remarks: The NCSFileViewFileInfoEx structure contains static file information about an open JPEG
2000 file view. This information is obtained from a call to NCScbmGetViewFileInfoEx()
in the C API. The structure contains similar components to NCSFileViewFileInfo, with
some additional data corresponding to the added flexibility of the JPEG 2000 file format.

arameters: fCWRotationDegrees Clockwise rotation of the image in world coordinate space,
expressed in degrees

eColorSpace Color space of the image, one of:
NCSCS_NONE = 0,
NCSCS_GREYSCALE = 1,
NCSCS_YUV = 2,
NCSCS_MULTIBAND = 3,
NCSCS_sRGB = 4,
NCSCS_YCbCr = 5

eCellType Data type of the sample values in each image component at each
pixel, one of:
NCSCT_UINT8,
NCSCT_UINT16,
NCSCT_UINT32,
NCSCT_UINT64,
NCSCT_INT8,
NCSCT_INT16,
NCSCT_INT32,
NCSCT_INT64,
NCSCT_IEEE4,
NCSCT_IEEE8

pBands pBands Pointer to an array of NCSFileBandInfo structures
describing the data content of each band in the image. See the
description of the NCSFileBandInfo structure below for
details.
ECW JPEG 2000 SDK - 83

Chapter 7 API reference ● Decompression: Related Data Structures
NCSFileBandInfo
typedef struct
{

UINT8 nBits;
BOOLEAN bSigned;
char *szDesc;

}
NCSFileBandInfo;

NCSFileViewSetInfo
typedef struct
{

void *pClientData;
UINT32 nBands;
UINT32 *pBandList;
UINT32 nTLX, nTLY;
UINT32 nBRX, nBRY;
UINT32 nSizeX, nSizeY;
UINT32 nBlocksInView;
UINT32 nBlocksAvailable;
UINT32 nBlocksAvailableAtSetView;
UINT32 nMissedBlocksDuringRead;
IEEE8 fTLX, fTLY;
IEEE8 fBRX, fBRY;

}

Remarks: The NCSFileBandInfo struct contains details about the bitdepth and signedness of the data
in each band of a JPEG 2000 file, and also a short ASCII description of the band, e.g. “Red”
or “Band #1”, which is automatically created by the SDK for you based on the probable
content of the file.
84 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Decompression: Related Data Structures

P

NCSFileViewSetInfo;

If you use NCScbmSetFileView() instead of NCScbmSetFileViewEx(), you get the dataset
coordinates (and not the world coordinates) returned in fTLX, fTLY, and fBRX, fBRY.

If you want to determine the progress of a view download, you can use the
NCScbmGetViewInfo() function to set up an NCSFileViewSetInfo structure for you. You
can then calculate the progress from the nBlocksInView and nBlocksAvailable fields.

Remarks: The NCSFileViewSetInfo structure contains information specific to the processing of data
from the current view, including the view extents, active band list, the amount of view data
available, and client data corresponding to the developer’s application. The
NCScbmGetViewSetInfo() function returns a pointer to this structure.

arameters: pClientData Client data.
nBands Number of bands to read.
pBandList Array of band numbers being read
nTLX, nTLY Top left of view in image cell coordinates.
nBRX, nBRY Bottom right of view in image cell coordinates.
nSizeX, nSizeY Size of view in pixels
nBlocksInView Total number of blocks that cover the view area.
nBlocksAvailable Number of blocks available at this instant
nBlocksAvailableAtSetViewNumber of blocks that were available at the time the view was

last set.
nMissedBlocksDuringReadNumber of blocks that were not present during a view read.
fTLX, fTLY Top left of the view in world coordinates as set by

NCScbmSetFileViewEx.
fBRX, fBRY Bottom right of the view in world coordinates.
ECW JPEG 2000 SDK - 85

Chapter 7 API reference ● C API: compression functions

P

C API: compression functions
The C interface for compressing to the ECW and JPEG 2000 file formats has been designed for
simplicity and ease of use. There are six associated library functions and three callback functions
which must be supplied by the developer, for reading the data to be compressed, checking the
status of the compression process, and cancelling the compression process if necessary,
respectively. All the data, including the names of the callback functions, are contained in a single
compression client data structure.

An application will generally follow this schedule when compressing an image file via the C API:

• Read, status and cancel callbacks are defined in separate functions.

• A compression client data structure is created using NCSEcwCompressAllocClient.

• The fields of the client data structure are populated according to the purpose of the
application.

• NCSEcwCompressOpen is called to initialize a new compression process.

• NCSEcwCompress is called to commence compressing data. As new data is required for
compression the developer-defined read callback function acquires it from other data
resources available to the application (for example an uncompressed buffer of image data
loaded from another image file).

• After compression completes, NCSEcwCompressClose is called to release the resources
used during compression and clean up.

• Finally NCSEcwCompressFreeClient is called to release the memory allocated to the
compression client data structure used to configure the compression task

Note: ECW compression is a recursive process and requires a large stack space to prevent
stack overflow, especially when compressing large images. This can be a problem
when using the ECW JPEG 2000 compression SDK inside an ATL control as they
have limited stack space. A solution is to call the NCSecw*() calls from a thread
you create inside the control (with a reasonable sized stack), rather than directly
from the control’s exported methods.

NCSEcwCompressAllocClient
NCSEcwCompressClient *NCSEcwCompressAllocClient(void)

Remarks: Allocates a new Compression Client structure, NCSEcwCompressClient, and fills in
default values.

arameters: None.

Returns: A new NCSEcwCompressClient structure containing default values.

Example: pClient = NCSEcwCompressAllocClient();
86 - ECW JPEG 2000 SDK

Chapter 7 API reference ● C API: compression functions

P

P

P

NCSEcwCompressOpen
NCSError NCSEcwCompressOpen(NCSEcwCompressClient *pInfo,

BOOLEAN bCalculateSizesOnly)

NCSEcwCompress
NCSError NCSEcwCompress(NCSEcwCompressClient *pInfo)

NCSEcwCompressClose
NCSError NCSEcwCompressClose(NCSEcwCompressClient *pInfo)eError =

NCSEcwCompress(pClient);

Remarks: Opens the compression, initialising the process using data given in the NCSEcwCompressClient
structure.

arameters: NCSEcwCompressClient *pInfo This is a pointer to the compression client structure, which
contains compression information and requirements.
BOOLEAN bCalculateSizesOnly This is set to TRUE only if an estimate of the size of the
output compressed file is required without doing the compression.

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: NCSEcwCompressOpen(pInfo, (BOOLEAN)FALSE);

Remarks: This runs the compression process, which calls the developer-defined callback functions referenced
within the compression client structure by the pReadCallback(), pStatusCallback() and
pCancelCallback() pointers.

arameters: NCSEcwCompressClient *pInfo This is a pointer to the compression client structure which
contains compression information and requirements, including the pReadCallback() function.

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: eError = NCSEcwCompress(pClient);

Remarks: This closes a compression process and releases the associated resources.

arameters: NCSEcwCompressClient *pInfo This is a pointer to the compression client structure which
contains information and requirements for the process.

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: NCSEcwCompressClose(pClient);
ECW JPEG 2000 SDK - 87

Chapter 7 API reference ● C API: compression functions

P

NCSEcwCompressFreeClient
NCSError NCSEcwCompressFreeClient(NCSEcwCompressClient *pInfo)

Remarks: This frees the Compression Client structure.

arameters: NCSEcwCompressClient *pInfo This is a pointer to the compression client structure that is
being freed.

Returns: An NCSError value to use for error checking. The return value is NCS_SUCCESS if the operation
succeeds.

Example: NCSEcwCompressFreeClient(pClient);
88 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Compression: developer defined functions

P

P

Compression: developer defined functions
To implement the SDK’s ECW and JPEG 2000 compression scheme using the C API, you must
provide code for a mandatory callback function for reading input image data, and may also
provide status and cancellation callback functions.

These functions are called by the library function NCSEcwCompress() during the compression
process.

• pReadCallback - mandatory

• pStatusCallback - optional

• pCancelCallback - optional

If you do not wish to specify a status callback or a cancel callback, you can leave the values of the
associated function pointers in your NCSEcwCompressClient data structure with value NULL.
Any callback functions you define must also be threadsafe because they are called from a different
thread to that from which NCSEcwCompress is called.

pCancelCallback
BOOLEAN *pCancelCallback(struct NCSEcwCompressClient *pClient)

pReadCallback
BOOLEAN *pReadCallback(struct NCSEcwCompressClient *pClient,

UINT32 nNextLine, IEEE4 **ppInputArray)

Remarks: This optional developer-created function is called by NCSEcwCompress() during the
compression. If it returns a value of TRUE, the compression process is aborted.

arameters: NCSEcwCompressClient *pClient This is a pointer to the compression client structure which
contains information about the compression task.

Returns: FALSE to continue compression, TRUE to cancel.

Remarks: This mandatory developer-created function is called by NCSEcwCompress() for every line of the
input image, designated by the ‘nNextLine’ argument, and reads in the cell values for each band into
the variable ‘ppInputArray’.

arameters: NCSEcwCompressClient *pClient This is a pointer to the compression client structure which
contains information about the compression task.

UINT32 nNextLine This is the number of the next image scan line to be read in.
IEEE4 **ppInputArray This is the array into which the callback function must load the input

cell values for each cell of each band.

Returns: TRUE if successful, FALSE if in error.
ECW JPEG 2000 SDK - 89

Chapter 7 API reference ● Compression: developer defined functions

P

pStatusCallback
void *pStatusCallback(struct NCSEcwCompressClient *pClient,

UINT32 nCurrentLine)

Remarks: This optional developer-created function is called by NCSEcwCompress() for every line of the
input image, designated by the ‘nCurrentLine’ argument. It provides status information on the
compression progress, which can be used to keep a user of your SDK application advised of the rate at
which compression is occurring.

arameters: NCSEcwCompressClient *pClient This is a pointer to the compression client structure which
contains information about the compression task.

UINT32 nCurrentLine This is the number of the line of the input data currently being read.

Returns: None
90 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Compression: related data structures
Compression: related data structures
There is one main data structure that contains all the information pertinent to the compression.

NCSEcwCompressClient
typedef struct NCSEcwCompressClient
{

char szInputFilename[MAX_PATH];
char szOutputFilename[MAX_PATH];
IEEE4 fTargetCompression;
CompressFormat eCompressFormat;
CompressHint eCompressHint;
UINT32 nBlockSizeX;
UINT32 nBlocksSizeY;
UINT32 nInOutSizeX;
UINT32 nInOutSizeY;
UINT32 nInputBands;
UINT32 nOutputBands;
UINT64 nInputSize;
IEEE8 fCellIncrementX;
IEEE8 fCellIncrementY;
IEEE8 fOriginX;
IEEE8 fOriginY;
CellSizeUnits eCellSizeUnits;
char szDatum[ECW_MAX_DATUM_LEN};
char szProjection[ECW_MAX_PROJECTION_LEN];
BOOLEAN (*pReadCallback) (struct NCSEcwCompressClient *pClient,

UINT32 nNextLine,
IEEE4 **ppInputArray);

void (*pStatusCallback) (struct NCSEcwCompressClient *pClient,
UINT32 nCurrentLine);

BOOLEAN (*pCancelCallback) (struct NCSEcwCompressClient *pClient);
void pClientData;
struct EcwCompressionTask pTask;
//These are filled in by NCSEcwCompressClose()
IEEE4 fActualCompression;
IEEE8 fCompressionSeconds;
IEEE8 fCompressionMBSec;
UINT64 nOutputSize;

}
NCSEcwCompressClient;

Remarks: The NCSEcwCompressClient compression client structure contains all the
compression information. Some data must be defined by the application developer prior
to commencement, the compression client inserts some of the component values, while
others are inserted by the compression library functions.
ECW JPEG 2000 SDK - 91

Chapter 7 API reference ● Information from the application developer
Information from the application developer
Each of the following data items must be specified by the application developer prior to
commencing a compression process. If they are not specified the default values will be used where
they exist, or an error will occur..

szInputFilename[] This is the path and file name of the image being compressed. It is optional. If no
output file is specified, a default output file name will be derived from the input file
name.

szOutputFilename[] This is the path and file name of the resultant compressed image. This is mandatory
unless the input file name has been specified.

fTargetCompression This is the target compression rate sought. This rate will usually be larger than the
compression rate actually achieved.

eCompressFormat This specifies the required compression format. Valid format codes are as follows:
0 = COMPRESS_NONE (no compression)
1 = COMPRESS_UINT8 (single band, grayscale, UINT8

compression)
2 = COMPRESS_YUV (RGB images in YUV digital format, e.g.

JPEG standard YUV)
3 = COMPRESS_MULTI (Multiband)
4 = COMPRESS_RGB (RGB conv. to YUV, format set internally to

COMPRESS_YUV)

eCompressHint This specifies the required compression type. Valid compression type codes are as
follows:
0 = COMPRESS_HINT_NONE (no compression)
1 = COMPRESS_HINT_FAST (perform the fastest possible compression)
2 = COMPRESS_HINT_BEST (Perform the best possible compression)
3 = COMPRESS_HINT_INTERNET (Default: optimize for Internet use)

nBlockSizeX,Y These specify the dimensions of the compressed image block size. X value can be
64, 128, 256, 512, 1024 or 2048.Y value can be 64, 128, 256 or 512. The default
value for both is 64.
Note: The SDK calculates an optimal block size internally instead of
allowing the application developer to change it manually. However the
architecture for compression remains the same for backwards compatability
with older SDK applications.

nInOutSizeX,Y This specifies the number of cells in the input and compressed image, in X and Y
directions.

nInputBands This is the number of bands in the input range.

fCellIncrementX,Y This is the input image cell size in cell size units.

fOriginX,Y These are the world coordinates of the input image registration cell.
92 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Information from the application developer
eCellSizeUnits This is the cell size units. This can be one of:
0 = ECW_CELL_UNITS_INVALID
1 = ECW_CELL_UNITS_METERS (default setting for RAW type images)
2 = ECW_CELL_UNITS_DEGREES
3 = ECW_CELL_UNITS_FEET

szDatum[] This is the image datum (ER Mapper GDT format).

szProjection[] This is the image projection (ER Mapper GDT format).
ECW JPEG 2000 SDK - 93

Chapter 7 API reference ● C API: Utility Functions

P

P

P

C API: Utility Functions
The following utility functions can be used via the C API to streamline your SDK application
code, providing support for several common tasks.

NCScbmGetFileMimeType
char *NCScbmGetFileMimeType(NCSFileView *pNCSFileView)

NCScbmGetFileType
NCSFileType NCScbmGetFileType(NCSFileView *pNCSFileView)

NCSCopyFileInfoEx
void NCSCopyFileInfoEx(NCSFileViewFileInfoEx *pDst,

NCSFileViewFileInfoEx *pSrc)

Remarks: Given an open file view, returns the MIME type of the underlying file as a string. If the file is an ECW
file, this will be "x-image/ecw". If the file is a JPEG 2000 file, it will be "image/jp2".

arameters: pNCSFileView the file view to query.

Returns: MIME type string.

Example: char *szMIME;
NCSFileView *pView = NCScbmOpenFileView("c:\\foo.ecw", &pView, NULL);
szMIME = NCSGetFileMimeType(pView);

Remarks: Given an open file view, returns the type of the underlying file, either ECW, JPEG 2000 or unknown.

arameters: pNCSFileView the file view to query.

Returns: NCSFileType enum value, either NCS_FILE_ECW, NCS_FILE_JP2, or NCS_FILE_UNKNOWN

Example: NCSFileView *pView = NCScbmOpenFileView("c:\\foo.ecw", &pView, NULL);
NCScbmGetFileType(pView);

Remarks: Copy the contents of one NCSFileViewFileInfoEx struct to another. This will duplicate
dynamically allocated resources associated with the source struct, e.g. projection and datum strings.

arameters: pDst struct to copy values to
pSrc struct to copy values from

Returns: None

Example: NCSCopyFileInfoEx(&Info, File.GetFileInfo());
94 - ECW JPEG 2000 SDK

Chapter 7 API reference ● C API: Utility Functions

P

P

P

NCSDetectGDTPath
void NCSDetectGDTPath()

NCSFreeFileInfoEx
void NCSFreeFileInfoEx(NCSFileViewFileInfoEx *pDst)

NCSGetEPSGCode
NCSError NCSGetEPSGCode(char *szDatum, char *szProjection, INT32 *pnEPSG)

Remarks: Try and detect GDT files on the machine currently in use and set the value of the GDT path
accordingly. This looks in GDT locations commonly used by various ER Mapper applications, such as
ER Mapper and Image Web Server.

arameters: None.

Returns: None.

Example: NCSDetectGDTPath();

Remarks: Free the resources allocated to an NCSFileViewFileInfoEx. This will free any dynamically
allocated resources associated with the struct (e.g. the memory allocated to projection, datum and
band description strings) as well.

arameters: pDst pointer to the struct

Returns: None.

Example: NCSFileViewFileInfoEx *pInfo = (NCSFileViewFileInfoEx
*)NCSMalloc(sizeof(NCSFileViewFileInfoEx),TRUE);

NCSInitFileInfoEx(pInfo);
NCSFreeFileInfoEx(pInfo);

Remarks: Translates ER Mapper projection and datum strings into an EPSG PCS (European Petroleum Survey
Group Projected Coordinate System) code, if the ECW JPEG 2000 SDK can find an appropriate code.
Otherwise, returns 0.

arameters: szProjection ER Mapper projection string.
szDatum ER Mapper datum string.
pnEPSG Pointer to returned EPSG code.

Returns: NCS_SUCCESS or appropriate error code.

Example: NT32 nEPSGCode = 0;
NCSGetEPSGCode("NUTM11","NAD27",&nEPSGCode);
ECW JPEG 2000 SDK - 95

Chapter 7 API reference ● C API: Utility Functions

P

P

P

P

NCSGetGDTPath
char *NCSGetGDTPath(void)

NCSGetProjectionAndDatum
NCSError NCSGetProjectionAndDatum(INT32 nEPSG, char **pszProjection, char **pszDatum)

NCSInitFileInfoEx
void NCSInitFileInfoEx(NCSFileViewFileInfoEx *pDst)

NCSSetGDTPath
void NCSSetGDTPath(char *szPath)

Remarks: Obtain the location which the ECW JPEG 2000 SDK currently searches for custom EPSG code
mappings. This may or may not be a valid location, depending on previous usage of
NCSSetGDTPath.

arameters: None.

Returns: Current path of GDT data.

Example: char *szPath = NCSGetGDTPath();

Remarks: Translates an EPSG code into ER Mapper projection and datum strings, if the ECW JPEG 2000 SDK
can find an appropriate correspondence.

arameters: nEPSG EPSG code to search against
pszProjection pointer to returned projection string
pszDatum pointer to returned datum string

Returns: NCS_SUCCESS or appropriate error code

Example: char *szProjection;
char *szDatum;
NCSGetProjectionAndDatum(4326,&szProjection,&szDatum);

Remarks: Initializes the members of an NCSFileViewFileInfoEx struct.

arameters: pDst pointer to an NCSFileViewFileInfoEx struct

Returns: None.

Example: NCSFileViewFileInfoEx Info;
InitFileInfoEx(&Info);

Remarks: Set the location of the GDT data you want the ECW JPEG 2000 SDK to use when translating between
EPSG codes and ER Mapper projection and datum strings.

arameters: szPath the fully qualified path of the GDT data director

Returns: None.

Example: NCSSetGDTPath("c:\\development\\erm\\ermapper_dev\\GDT_DATA");
96 - ECW JPEG 2000 SDK

Chapter 7 API reference ● C API: Utility Functions

P

NCSSetJP2GeodataUsage
void NCSSetJP2GeodataUsage(GeodataUsage nGeodataUsage)

See "Geocoding Information" for more details.

Remarks: Set the usage of geographical metadata with JPEG 2000 input and output. The precedence of metadata
controls which type of metadata (GML box, GeoTIFF box, or world file) will be used by preference
when reading JPEG 2000 files, and the types of metadata control which metadata will be written when
JPEG 2000 files are created.

arameters: nGeodataUsage GeodataUsage enum value specifying the preferred metadata usage.

Returns: None.

Example: NCSSetJP2GeodataUsage(USE_GML_WLD);
ECW JPEG 2000 SDK - 97

Chapter 7 API reference ● C++ API
C++ API
The C++ API to the ECW JPEG 2000 SDK provides a file-oriented means of opening, configuring
and compressing ECW and JPEG 2000 files. Since version 3.0 of the ECW JPEG 2000 SDK, the
C++ API has become the preferred entry point to the functionality provided by the SDK, giving
application developers slightly more control than the C API. Although the ECW JPEG 2000 SDK
has an internal structure that includes many complex data objects, only three are relevant to SDK
users and documented here, namely the CNCSFile, CNCSRenderer, and CNCSError classes.

Full class documentation describing all the functionality made available through these objects is
provided.
98 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Class Reference: CNCSFile

P

Class Reference: CNCSFile
This class provides a file oriented object to access and create ECW and JPEG 2000 images. The
principal methods for use by an application programmer are Open, Close, GetFileInfo,
SetFileInfo, SetParameter, Write, WriteLineBIL, WriteReadLine,
RefreshUpdateEx and the various ReadLine methods. This class is the main access point for
SDK functionality using the C++ API.

CNCSFile inherits from CNCSJP2FileView and is the parent class of CNCSRenderer. A
standard way to use the CNCSFile class is to create a class in your application that inherits from
CNCSFile and overrides its methods, Refresh-UpdateEx and WriteReadLine for
decompression and compression respectively.

Construction and destruction

Constructor:
CNCSFile::CNCSFile()

This is the default constructor. It initializes all members of the class and leaves it ready to handle
new input or output tasks.

Destructor:
virtual CNCSFile::~CNCSFile()[virtual]

The destructor of CNCSFile is declared virtual so that it can be overridden in subclasses to release
any additional resources they may acquire.

Methods:

CNCSFile::AddBox
virtual CNCSError AddBox(CNCSJP2Box *pBox)

Remarks: Add a header box to an output JPEG 2000 file, which will be written out when the file is compressed.
Normally the box would be a subclass of one of the two metadata boxes CNCSJP2XMLBox and
CNCSJP2UUIDBox. When the file is written, the box's UnParse() method will be called. Ensuring
the validity of the resulting output is the responsibility of the application developer.

arameters: pBox pointer to the box to be written

Returns: CNCSError object providing any applicable error information

Example: CNCSFile File;
File.Open("C:\\foo.jp2", false, true);
CMyMetadataBox Box;
File.AddBox((CNCSJP2Box *)&Box);
ECW JPEG 2000 SDK - 99

Chapter 7 API reference ● Methods:

P

P

P

CNCSFile::BreakdownURL
BOOLEAN CNCSFile::BreakdownURL(char* pURLPath,

char** ppProtocol,
char** ppHost,
char** ppFilename)[static]

CNCSFile::Close
NCSError CNCSFile::Close(BOOLEAN bFreeCache = TRUE)

CNCSFile::ConvertDatasetToWorld
NCSError CNCSFile::ConvertDatasetToWorld(INT32 nDatasetX,

INT32 nDatasetY,
IEEE8* pdWorldX,
IEEE8* pdWorldY)

Remarks: Utility Function. Breaks down a URL string into protocol, hostname and filename components.

arameters: [in] pURLPath The URL to be broken down and analysed.
[out] ppProtocol A pointer to the protocol string resulting from the URL decomposition.
[out] ppHost A pointer to the hostname resulting form the URL decomposition.
[out] ppFilename A pointer to the filename resulting from the URL decomposition.

Returns: BOOLEAN value, whether the input URL is a remote file.

Remarks: Close the file.

arameters: [in] bFreeCache Specify whether or not to free the memory cache that is associated with the file
after closing it.

Returns: NCSError value, NCS_SUCCESS or any applicable error code.

Remarks: Performs a rectilinear conversion from dataset coordinates to world coordinates.

arameters: [in] nDatasetX The dataset X coordinate.
[in] nDatasetY The dataset Y coordinate.
[out] pdWorldX A buffer for the output world X coordinate.
[out] pdWorldY A buffer for the output world Y coordinate.

Returns: None.
100 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSFile::ConvertWorldToDataset
NCSError CNCSFile::ConvertWorldToDataset(INT32 dWorld,

INT32 dWorldY,
IEEE8* pnDatasetX,
IEEE8* pnDatasetY)

CNCSFile::DetectGDTPath
static void DetectGDTPath()

CNCSFile::FormatErrorText
const char* CNCSFile::FormatErrorText(NCSError nErrorNum) [static]

CNCSFile::GetBox
virtual CNCSJP2Box* GetBox(UINT32 nTBox, CNCSJP2Box *pLast = NULL)

Remarks: Performs a rectilinear conversion from world coordinates to dataset coordinates.

arameters: [in] dWorldX The world X coordinate.
[in] dWorldY The world Y coordinate.
[out] pnDatasetX A buffer for the output dataset X coordinate.
[out] pnDatasetY A buffer for the output dataset Y coordinate.

Returns: None.

Remarks: Try and detect GDT files on the machine currently in use and set the value of the GDT path
accordingly. This looks in GDT locations commonly used by various ER Mapper applications, such as
ER Mapper and Image Web Server

arameters: None.

Returns: None.

Example: CNCSFile::DetectGDTPath();

Remarks: Obtains meaningful error text from a returned error code.

arameters: [in] nErrorNum Error code

Returns: char*) value, an explanatory ASCII string for the error code

Remarks: Return the next box of the specified type from an open JPEG 2000 file.

arameters: nTBox unsigned 32 bit value representing the box type. This is usually a string
of four bytes with a mnemonic value such as ‘jp2h’, ‘uuid’, ‘colr’, etc.

pLast last box of this type found, if applicable
ECW JPEG 2000 SDK - 101

Chapter 7 API reference ● Methods:

P

P

P

CNCSFile::GetClientData
void *CNCSFile::GetClientData()

CNCSFile::GetEPSGCode
INT32 GetEPSGCode()

CNCSFile::GetEPSGCode
CNCSError CNCSFile::GetEPSGCode(char *szProjection,

char *szDatum,
UINT32 *nEPSGCode) [static]

Returns: Pointer to the next box of this type found in the file.

Example: CNCSFile File;
File.Open("C:\\foo.jp2", false, false);
UINT8 nTypeChars[4] = {'u','u','i','d'};
UINT32 nTBox = *((UINT32 *)nTypeChars);
CNCSJP2Box pBox = File.GetBox(nTBox);

Remarks: Get any client data that has been established by the SDK application. This method is generally called
by a subclass of CNCSFile in an overridden version of CNCSFile::RefreshUpdateEx.

arameters: None

Returns: void pointer to client data.

Remarks: Return the EPSG code associated with an open ECW or JPEG 2000 file's coordinate system, if any.

arameters: None.

Returns: The applicable EPSG code, or 0.

Example: CNCSFile File;
File.Open("C:\\georeferenced.ecw",false, false);
INT32 nEPSG = File.GetEPSGCode;

Remarks: This function returns a European Petroleum Survey Group (EPSG) code for the projected coordinate
system to which the open image file corresponds, given ER Mapper style projection and datum
strings. Where the image is not georeferenced an error will be returned.

arameters: szProjection ER Mapper style projection string
szDatum ER Mapper style datum string
nEPSGCode Reference to an integer variable in which to store the corresponding

EPSG code.

Returns: CNCSError value indicating if a corresponding EPSG code was successfully found

Example: INT32 nEPSG;
CNCSFile::GetEPSGCode("NUTM11", "NAD27", &nEPSG);

if (nEPSG != 0) printf("Associated EPSG code: %d\r\n",nEPSG);
else printf("No associated EPSG code found.\r\n");
102 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSFile::GetFile
class CNCSJP2File* GetFile()

CNCSFile::GetFileInfo
const NCSFileViewFileInfoEx *CNCSFile::GetFileInfo()

CNCSFile::GetFileMimeType
char* GetFileMimeType()

CNCSFile::GetFileType
NCSFileType GetFileType()

Remarks: Retrieve the underlying CNCSJP2File object from an open JPEG 2000 file view.

arameters: None.

Returns: Pointer to the underlying file.

Example: CNCSFile File;
File.Open("C:\\foo.jp2", false, false);
CNCSJP2File *pJP2File = File.GetFile();

Remarks: Get the NCSFileViewFileInfoEx structure corresponding to open file.

arameters: None.

Returns: Pointer to the file information structure.

Remarks: Returns the MIME type of the currently open file. This will either be "x-image/ecw" or "image/jp2".

arameters: None.

Returns: MIME type as string.

Example: char *szMime = File.GetFileMimeType();

Remarks: Returns the type of the file associated with an open file view. This is either NCS_FILE_JP2,
NCS_FILE_ECW, or NCS_FILE_UNKNOWN.

arameters: None.

Returns: NCSFileType enum value

Example: CNCSFile File;
File.Open("C:\\georeferenced.jp2",false,false);

if (File.GetFileType() == NCS_FILE_ECW)
printf("Open file is actually an ECW\r\n");
ECW JPEG 2000 SDK - 103

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSFile::GetFileViewSetInfo
const NCSFileViewSetInfo *CNCSFile::GetFileViewSetInfo()

CNCSFile::GetGDTPath
static char *GetGDTPath()

CNCSFile::GetNCSFileView
NCSFileView* GetNCSFileView()

CNCSFile::GetNCSFileView
NCSFileView *CNCSFile::GetNCSFileView()

CNCSFile::GetPercentComplete
INT32 CNCSFile::GetPercentComplete()

Remarks: Get current NCSFileViewSetinfo structure.

arameters: None

Returns: Pointer to the current SetViewInfo.

Remarks: Obtain the location which the ECW JPEG 2000 SDK currently searches for custom EPSG code
mappings. This may or may not be a valid location, depending on previous usage of
NCSSetGDTPath.

arameters: None.

Returns: Current path of GDT data.

Example: char *szPath = CNCSFile::GetGDTPath();

Remarks: Retrieve the underlying NCSFileView struct from an open ECW file view.

arameters: None

Returns: pointer to the associated NCSFileView struc

Example: CNCSFile File;
File.Open("C:\\foo.ecw", false, false);
NCSFileView *pView = File.GetNCSFileView();

Remarks: Get underlying NCSFileView pointer, where it exists.

arameters: None

Returns: Pointer to the NCSFileView instance.

Remarks: Return the percentage of image remaining to be downloaded.
104 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSFile::GetPercentCompleteTotalBlocksInView
INT32 CNCSFile::GetPercentCompleteTotalBlocksInView()

CNCSFile::GetProjectionAndDatum
static CNCSError GetProjectionAndDatum(const INT32 nEPSGCode,

char **ppProjection, char **ppDatum)

CNCSFile::GetStream
CNCSJPCIOStream* GetStream()

arameters: None.

Returns: The percentage complete value; a number from 0 to 100 indicating the proportion of the image that
remains to be downloaded.

Remarks: Return the percentage of the total blocks in the view that have been downloaded.

arameters: None

Returns: A number from 0 to 100 representing the total proportion of blocks in the view that have been
downloaded.

Remarks: Convert an EPSG PCS code to ER Mapper projection and datum strings if a mapping is available to
the ECW JPEG 2000 SDK.

arameters: zEPSGCode input EPSG code
ppProjection output ER Mapper projection string, e.g. "NUTM11"
ppDatum output ER Mapper datum string, e.g. "NAD27"

Returns: CNCSError object containing any applicable error information

Example: char *szDatum = NULL;
char *szProjection = NULL;
CNCSFile::GetProjectionAndDatum(4326, &szProjection, &szDatum);

Remarks: Return a pointer to the underlying CNCSJPCIOStream object being used for input or output with a
JPEG 2000 file.

arameters: None.

Returns: Pointer to the disk, memory or ECWP IO stream.

Example: CNCSFile File;
File.Open("C:\\foo.jp2", false, false);
CNCSJPCIOStream *pStream = File.GetStream();
ECW JPEG 2000 SDK - 105

Chapter 7 API reference ● Methods:

P

P

P

CNCSFile::GetUUIDBox
virtual CNCSJP2Box* GetUUIDBox(NCSUUID uuid, CNCSJP2Box *pLast = NULL)

CNCSFile::GetXMLBox
virtual CNCSJP2Box* GetXMLBox(CNCSJP2Box *pLast = NULL)

CNCSFile::Open
NCSError CNCSFile::Open(char* pURLPath,

BOOLEAN bProgressiveDisplay,
BOOLEAN bWrite = FALSE)

Remarks: Return the next UUID box in an open JPEG 2000 file, with a UUID matching the argument.

arameters: uuid 16-byte UUID value to search for in the open file
pLast last such UUID box found, if applicable

Returns: pointer to the next such UUID box found

Example: CNCSFile File;
File.Open("C:\\foo.jp2", false, false);
NCSUUID uuid = {0x0,0x1,0x2,0x3,0x4,0x5,0x6,0x7,0x8,
0x9,0xa,0xb,0xc,0xd,0xe,0xf};
CNCSJP2Box *pBox = File.GetUUIDBox(uuid);

Remarks: Return the next XML box in an open JPEG 2000 file.

arameters: pLast Last XML box found, if applicable.

Returns: pointer to the next XML box found

Example: CNCSFile File;
File.Open("C:\\foo.jp2", false, false);
CNCSJP2Box *pBox = NULL;
while ((pBox = File.GetXMLBox(pBox)) != NULL)
{
printf("New XML box found!\r\n");
}

Remarks: Open a file for input or output.

arameters: pStream Input stream on which to open the file
bProgressiveDisplay Whether or not to open in progressive read mode.

Returns: CNCSError object providing information about any error that occurred.

Example: CNCSFile File;
File.Open("ecwp://www.earthetc.com/SampleIWS/images/usa/
sandiegoairphoto.ec
w", true, false);
106 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSFile::Open
virtual CNCSError Open(CNCSJPCIOStream *pStream,

bool bProgressiveDisplay = false)

CNCSFile::ReadLineABGR
NCSEcwReadStatus CNCSFile::ReadLineABGR(UINT32 *pABGR) [inline, virtual]

CNCSFile::ReadLineARGB
NCSEcwReadStatus CNCSFile::ReadLineARGB(UINT32 *pARGB) [inline, virtual]

CNCSFile::ReadLineBGR
NCSEcwReadStatus CNCSFile::ReadLineBGR(UINT8 *pBGRTriplet) [inline, virtual]

Remarks: Open a JPEG 2000 file parsing input from the specified input stream.

arameters: [in] pURLPathThe location of the file - if for input, can be a remote file. Can be a UNC location.
[in] bProgressiveDisplay Selects whether the file will be opened in progressive mode if for
input.
[in] bWrite Selects whether the file is being opened for output.

Returns: NCSError value, NCS_SUCCESS or any applicable error code.

Example: CMyIOStream Stream;
Stream.Open("c:\\foo.nitf", false);
CNCSFile File;
((CNSJP2FileView&)File).Open(&Stream);

Remarks: Read the next line in ABGR UINT32 format from the current view into the file. The alpha band
contains only zero values, and this function is provided solely for interoperability with graphics
software that uses alpha blending and a compatible pixel value data structure.

arameters: pABGR Pointer to UINT32 buffer to receive ABGR data.

Returns: NCSEcwReadStatus Read status code.

Remarks: Read the next line in ARGB UINT32 format from the current view into the file.The alpha band
contains only zero values, and this function is provided solely for interoperability with graphics
software that uses alpha blending and a compatible pixel value data structure.

arameters: pARGB Pointer to UINT32 buffer to receive ARGB data

Returns: NCSEcwReadStatus Read status code.

Remarks: Read the next line in BGR UINT8 triplet format from the current view into the file.

arameters: pBGRTriplet Pointer to UINT8 buffer to receive BGR data.

Returns: NCSEcwReadStatus Read status code.
ECW JPEG 2000 SDK - 107

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSFile::ReadLineBGRA
NCSEcwReadStatus CNCSFile::ReadLineBGRA(UINT32 *pBGRA) [inline, virtual]

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(NCSEcwCellType eType,

UINT16 nBands,
void **ppOutputLine,
UINT32 *pLineSteps = NULL)

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(UINT8 **ppOutputLine) [inline, virtual]

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(UINT16 **ppOutputLine)[inline, virtual]

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(UINT32 **ppOutputLine)[inline, virtual]

Remarks: Read the next line in BGRA UINT32 format from the current view into the file. The alpha band
contains only zero values, and this function is provided solely for interoperability with graphics
software that uses alpha blending and a compatible pixel value data structure.

arameters: pBGRA Pointer to UINT32 buffer to receive BGRA data.

Returns: NCSEcwReadStatus Read status code.

Remarks: Read the next line in BIL format from the current view into the file.

arameters: eType Preferred sample type for the output buffer
nBands Number of bands in the output buffer
ppOutputLine Array of buffer pointers, one buffer for each band
pLineSteps Line steps, in dataset cells

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in BIL format from the current view into the file.

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in BIL format from the current view into the file.

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in BIL format from the current view into the file.
108 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

P

P

P

P

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(UINT64 **ppOutputLine)[inline, virtual]

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(INT8 **ppOutputLine) [inline, virtual]

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(INT16 **ppOutputLine) [inline, virtual]

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(INT32 **ppOutputLine) [inline, virtual]

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(INT64 **ppOutputLine) [inline, virtual]

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in BIL format from the current view into the file.

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in BIL format from the current view into the file.

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in BIL format from the current view into the file.

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in BIL format from the current view into the file.

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in BIL format from the current view into the file.

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code
ECW JPEG 2000 SDK - 109

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(IEEE4 **ppOutputLine) [inline, virtual]

CNCSFile::ReadLineBIL
NCSEcwReadStatus CNCSFile::ReadLineBIL(IEEE8 **ppOutputLine) [inline, virtual]

CNCSFile::ReadLineRGB
NCSEcwReadStatus CNCSFile::ReadLineRGB(UINT8 *pRGBTriplet) [inline, virtual]

CNCSFile::ReadLineRGBA
NCSEcwReadStatus CNCSFile::ReadLineRGBA(UINT32 *pRGBA) [inline, virtual]

CNCSFile::RefreshUpdate
virtual void CNCSFile::RefreshUpdate(NCSFileViewSetInfo

*pViewSetInfo)[virtual]

Remarks: Read the next line in BIL format from the current view into the file.

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in BIL format from the current view into the file.

arameters: ppOutputLine Array of buffer pointers, one buffer for each band

Returns: NCSEcwReadStatus Read status code

Remarks: Read the next line in RGB UINT8 triplet format from the current view into the file. The alpha band
contains only zero values, and this function is provided solely for interoperability with graphics
software that uses alpha blending and a compatible pixel value data structure.

arameters: pRGBTriplet Byte buffer into which RGB triplets can be read.

Returns: NCSEcwReadStatus Read status code.

Remarks: Read the next line in RGBA UINT32 format from the current view into the file. The alpha band
contains only zero values, and this function is provided solely for interoperability with graphics
software that uses alpha blending and a compatible pixel value data structure.

arameters: pRGBA Pointer to UINT32 buffer to receive RGBA data

Returns: NCSEcwReadStatus Read status code.

Remarks: More data has become available and a refresh update should be done. This function is deprecated and
you should generally use CNCSFile::RefreshUpdateEx instead
110 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

P

P

P

CNCSFile::RefreshUpdateEx
virtual NCSEcwReadStatus CNCSFile::RefreshUpdateEx(NCSFileViewSetInfo

* pViewSetInfo) [virtual]

CNCSFile::SetClientData
void CNCSFile::SetClientData(void *pClientData)

CNCSFile::SetCompressClient
CNCSError CNCSFile::SetCompressClient(
struct NCSEcwCompressClient *pCompressClient)

CNCSFile::SetFileInfo
CNCSError CNCSFile::SetFileInfo(NCSFileViewFileInfoEx &Info) [inline, virtual]

arameters: [in] pViewSetInfo This is a pointer to a SetViewInfo containing details about the view the
update is from.

Returns: None

Remarks: More data has become available and a refresh update should be done.

arameters: [in] pViewSetInfo This is a pointer to SetViewInfo containing details about the view for
which the update is intended.

Returns: NCSEcwReadStatus Returns the Read status code from the ReadLine*() call. This is
reimplemented from CNCSJP2FileView.

Remarks: This method allows the SDK user to set a private data structure the state of which can safely be
queried in an overridden version of CNCSFile::RefreshUpdateEx in some developer-defined subclass.

arameters: pClientData void pointer to private data structure

Returns: None

Remarks: Set Compress Client - Internal func for “C” API support only

arameters: pCompressClient ECW Compress Client struct

Returns: CNCSError Error code;

Remarks: Set FileInfo structure.

arameters: Info New FileInfo - used to specify file info for compression

Returns: CNCSError Return pointer to the FileInfo.
ECW JPEG 2000 SDK - 111

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSFile::SetGDTPath
static void SetGDTPath(const char *szPath)

CNCSFile::SetKeySize
void CNCSFile::SetKeySize() [static]

CNCSFile::SetParameter
void CNCSFile::SetParameter(Parameter eType)

CNCSFile::SetParameter
void CNCSFile::SetParameter(Parameter eType, IEEE4 fValue)

Remarks: Set the location of the GDT data you want the ECW JPEG 2000 SDK to use when translation between
EPSG codes and ER Mapper projection and datum strings.

arameters: szPath the fully qualified path of the GDT data directory

Returns: None.

Example: CNCSFile::SetGDTPath("c:\\development\\erm\\ermapper_dev\\GDT_DATA");

Remarks: Call this function to enable unlimited compression.
Note: Verify you are compliant with the appropriate license agreements. Calling this function

signals you accept the terms of the appropriate license.

arameters: None.

Returns: None.

Remarks: This function is used to configure the way the ECW JPEG 2000 SDK handles file input and output.
See below for full documentation on the allowable parameter types and their value ranges. This
version of the function allows control of configuration parameters without associated values.

arameters: eType Parameter type to be configured

Returns: None.

Remarks: This function is used to configure the way the ECW JPEG 2000 SDK handles file input and output.
See below for full documentation on the allowable parameter types and their value ranges. This
version of the function allows control of configuration parameters with single precision floating point
values.

arameters: eType Parameter type to be configured.
fValue New value of this configuration parameter.

Returns: None.
112 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

CNCSFile::SetParameter
void CNCSFile::SetParameter(Parameter eType, BOOLEAN bValue)

CNCSFile::SetParameter
void CNCSFile::SetParameter(Parameter eType, UINT32 nValue)

The CNCSFile::SetParameter method, and the associated parameters and their default and
permissible values are described in more detail below.

Note: The JP2_GEODATA_USAGE parameter corresponds to a static variable and thus
once set the new value will apply to all instances of CNCSFile and its subclasses
on input and output. All other configuration parameters correspond to dynamic data
that is associated with a single instance of CNCSFile or one of its subclasses.

Remarks: This function is used to configure the way the ECW JPEG 2000 SDK handles file input and output.
See below for full documentation on the allowable parameter types and their value ranges. This
version of the function allows control of configuration parameters with boolean values.

arameters: eType Parameter type to be configured.
bValue New value of this configuration parameter.

Returns: None.

Remarks: This function is used to configure the way the ECW JPEG 2000 SDK handles file input and output.
See below for full documentation on the allowable parameter types and their value ranges. This
version of the function allows control of configuration parameters with unsigned 32 bit integer values.

arameters: eType Parameter type to be configured
nValue New value of this configuration parameter

Returns: None.

Parameter Value Type Notes

JP2_COMPRESS_PROFILE_BASELINE_0 None Compress for Class 0 compliant decoders

JP2_COMPRESS_PROFILE_BASELINE_1 None Compress for Class 1 compliant decoders

JP2_COMPRESS_PROFILE_BASELINE_2 None Compress for Class 2 compliant decoders

JP2_COMPRESS_PROFILE_NITF_BIIF_NP
JE

None Compress according to NITF/BIIF NPJE
compression profile

JP2_COMPRESS_PROFILE_NITF_BIIF_EP
JE

None Compress according to NITF/BIIF EPJE
profile

JP2_COMPRESS_LEVELS UINT32 Default calculated so that (r == 0) has
dimensions less than or equal to 64 x 64

JP2_COMPRESS_LAYERS UINT32 Default 1
ECW JPEG 2000 SDK - 113

Chapter 7 API reference ● Methods:

Pa
CNCSFile::SetRefreshCallback
CNCSError CNCSFile::SetRefreshCallback(

NCSEcwReadStatus (*pCallback)(NCSFileView *))

JP2_COMPRESS_PRECINCT_WIDTH UINT32 Default 64 or larger depending on output
size.

JP2_COMPRESS_PRECINCT_HEIGHT UINT32 Default 64 or larger depending on output
size.

JP2_COMPRESS_TILE_WIDTH UINT32 Default to image width specified in
SetFileInfo.

JP2_COMPRESS_TILE_HEIGHT UINT32 Default to image height specified in
SetFileInfo.

JP2_COMPRESS_INCLUDE_SOP BOOLEAN Specify whether to include start-of-packet
markers - default is false.

JP2_COMPRESS_INCLUDE_EPH BOOLEAN Specify whether to include end-of-packet-
header markers - default is true.

JP2_COMPRESS_PROGRESSION_LRCP None Default progression order - layer,
resolution, component, precinct.

JP2_COMPRESS_PROGRESSION_RLCP None Specify resolution, layer, component,
precinct progression order instead if
desired.

JP2_GEODATA_USAGE UINT32 Control the usage and precedence of
georeferencing metadata - see chapter
‘Geocoding Information’.

JP2_DECOMPRESS_LAYERS UINT32 Default behaviour is to decompress all
layers.

JP2_DECOMPRESS_RECONSTRUCTION_
PARAMETER

IEEE4 Dequantization parameter 0.0 <= r < 1.0,
default is 0.0

Remarks: Set refresh callback function.

rameters: pCallback Refresh callback function to use.

Returns: CNCSError Error code;

Parameter Value Type Notes
114 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

CNCSFile::SetView
NCSError CNCSFile::SetView(INT32 nBands,

INT32* pBandList,
INT32 nWidth,
INT32 nHeight,
INT32 dDatasetTLX,
INT32 dDatasetTLY,
INT32 dDatasetBRX,
INT32 dDatasetBRY)

CNCSFile::SetView
NCSError CNCSFile::SetView(INT32 nBands,

INT32* pBandList,
INT32 nWidth,
INT32 nHeight,
IEEE8 dWorldTLX,
IEEE8 dWorldTLY,
IEEE8 dWorldBRX,
IEEE8 dWorldBRY)

Remarks: Set the view on the open file. This version takes dataset coordinates as input.

arameters: [in] nBands The number of bands to include in the view being set.
[in] pBandList An array of band indices specifying which bands to include and in which order.
[in] nWidth The width of the view to construct in dataset cells.
[in] nHeight The height of the view to construct in dataset cells.
[in] dDatasetTLX The left of the view to construct, specified in dataset coordinates.
[in] dDatasetTLY The top of the view to construct, specified in dataset coordinates.
[in] dDatasetBRX The right of the view to construct, specified in dataset coordinates.
[in] dDatasetBRY The bottom of the view to construct, specified in dataset coordinates.

Returns: NCSError value, NCS_SUCCESS or any applicable error code.

Notes: This is implemented in CNSRenderer.

Remarks: Set the view on the open file. This version takes world coordinates as input.

arameters: [in] nBands The number of bands to include in the view being set.
[in] pBandList An array of band indices specifying which bands to include and in which order.
[in] nWidth The width of the view to construct in dataset cells.
[in] nHeight The height of the view to construct in dataset cells.
[in] dWorldTLX The left of the view to construct, specified in world coordinates.
[in] dWorldTLY The top of the view to construct, specified in world coordinates.
[in] dWorldBRX The right of the view to construct, specified in world coordinates.
[in] dWorldBRY The bottom of the view to construct, specified in world coordinates.

Returns: NCSError value, NCS_SUCCESS or any applicable error code.

Notes: This is reimplemented in CNSRenderer.
ECW JPEG 2000 SDK - 115

Chapter 7 API reference ● Methods:

P

P

CNCSFile::SetView
CNCSError CNCSFile::SetView(INT32 nBands,

UINT32 nDatasetTLX,
UINT32 nDatasetTLY,
UINT32 nDatasetBRX,
UINT32 nDatasetBRY,
UINT32 nWidth,
UINT32 nHeight,
IEEE8 dWorldTLX = 0.0,
IEEE8 dWorldTLY = 0.0,
IEEE8 dWorldBRX = 0.0,
IEEE8 dWorldBRY = 0.0) [inline, virtual])

CNCSFile::Write
CNCSError CNCSFile::Write() [virtual]

Remarks: Set a view into the open file for reading. The world coordinates are informative only.

arameters: nBands The number of bands in pBandList to read
pBandList An array of band indices to read
nWidth Width of the view in pixels
nHeight Height of the view in pixels
nDatasetTLX Top left X dataset coordinate of view
nDatasetTLY Top left Y dataset coordinate of view
nDatasetBRX Bottom right X dataset coordinate of view
nDatasetBRY Bottom right Y dataset coordinate of view
dWorldTLX Top left X world coordinate of view (informative only)
dWorldTLY Top left Y world coordinate of view (informative only)
dWorldBRX Bottom right X world coordinate of view (informative only)
dWorldBRY Bottom right Y world coordinate of view (informative only).

Returns: CNCSError NCS_SUCCESS or error code on failure.

Remarks: This method starts compressing output data to your output file. The output filename is the filename
associated with the currently open file object, and the output file format is determined according to the
extension of this filename (for example, if the filename has a “.ecw” extension, compression will be to
the ECW format, and if the extension is “.jp2”, compression will be to the JPEG 2000 format. Once
the compression process begins callback functions are used to read data, abort the process, and check
on its progress.

arameters: None.

Returns: CNCSError value indicating the success or otherwise of the compression task.
116 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

P

CNCSFile::WriteCancel
bool CNCSFile::WriteCancel(void) [virtual]

CNCSFile::WriteLineBIL
CNCSError CNCSFile::WriteLineBIL(NCSEcwCellType eType,

UINT16 nBands,
void **ppOutputLine,
UINT32 *pLineSteps = NULL) [inline, virtual]

CNCSFile::WriteReadLine
CNCSError CNCSFile::WriteReadLine(UINT32 nNextLine,
void **ppInputArray) [virtual]

Remarks: This function is called by the SDK each time a scanline is written from input data to an output ECW or
JPEG 2000 file. Override this virtual callback function to return true in response to a cancel
compression event from your application.

arameters: None.

Returns: TRUE if the compression should be cancelled.

Remarks: Write the next line in BIL format into the JP2 file.

arameters: eType Output buffer cell type
nBands Number of output bands
ppOutputLine Array of scanline buffer pointers, one buffer for each band
pLineSteps Line steps, in CELLS

Returns: CNCSError, Write status code

Remarks: In pull-through write mode this callback method is called once by the SDK for every image line output
to an ECW or JPEG 2000 file by this CNCSFile object. You should override this method to read
uncompressed image data from another resource available to your SDK application and load it into the
input buffer.

arameters: nNextLine The next line of uncompressed input to load
ppInputArray The BIL-formatted input buffer into which to load your uncompressed input

Returns: CNCSError, Write status code
ECW JPEG 2000 SDK - 117

Chapter 7 API reference ● Methods:

P

CNCSFile::WriteStatus
void CNCSFile::WriteStatus(UINT32 nCurrentLine) [virtual]

Remarks: This callback function is called once by the SDK for every image line output to an ECW or JPEG
2000 file during compression. You should override this function to advise you of the progress of
compression by printing to the standard output or your application’s user interface. You can use the
nCurrentLine parameter to determine the progress of compression based on the total number of
scanlines in the output. If updating a GUI progress bar in your application, it is wise to fix the total
number of times the GUI is updated by testing nCurrentLine relative to the total number of scanlines,
since in a large compression process performance may deteriorate if it is necessary to constantly
perform a comparatively expensive update routine.

arameters: nCurrentLine The current line being written to the output image

Returns: None
118 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Class Reference: CNCSRenderer

P

Class Reference: CNCSRenderer
This class is used to render ECW and JPEG 2000 imagery to a device context. It inherits from the
CNCSFile class. A simple SetExtents() call is used to adjust the view extents appropriately
and then imagery can be drawn. The extents do not have to lie within the boundary of the dataset
(as in the case of the CNCSFile class). It will clip and draw intersection regions accordingly. It
can be transparent or opaque. In opaque mode a background color can be set.

CNCSRenderer is a great example of the flexibility and ease of use of the ECW JPEG 2000 SDK
technology and the best option for you to get ECW and JPEG 2000 imagery rapidly into your SDK
application.

The additional public members of CNCSRenderer, and those whose behavior is changed from
that in the parent class CNCSFile, are documented in this section.

Construction and destruction

Constructor
CNCSRenderer::CNCSRenderer()

This is the default constructor. It initializes all members of the class and leaves it ready to handle
new input or output tasks. The background color is initially set to the system default.

Destructor
virtual CNCSRenderer::~CNCSRenderer()[virtual]

The destructor of CNCSRenderer is declared virtual so that it can be overridden in subclasses to
release any additional resources they may acquire.

Methods:

CNCSRenderer::ApplyLUTs
BOOLEAN CNCSRenderer::ApplyLUTS(BOOLEAN bEnable)

Remarks: Sets whether or not to apply look up tables before rendering to the device context.

arameters: bEnable Whether or not to apply LUTs

Returns: TRUE or FALSE.
ECW JPEG 2000 SDK - 119

Chapter 7 API reference ● Methods:

P

P

P

CNCSRenderer::CalcHistograms
BOOLEAN CNCSRenderer::CalcHistograms(BOOLEAN bEnable)

CNCSRenderer::DrawImage
NCSError CNCSRenderer::DrawImage(HDC hDeviceContext,

LPRECT pClipRect,
IEEE8 dWorldTLX,
IEEE8 dWorldTLY,
IEEE8 dWorldBRX,
IEEE8 dWorldBRY)

CNCSRenderer::FreeJPEGBuffer
void CNCSRenderer::FreeJPEGBuffer(UINT8 *pBuffer) [static]

Remarks: Remarks: Sets whether or not to perform histogram calculations during processing. Call before a call
to CNCSRenderer::SetView

arameters: bEnable Whether or not to do histogram calculations.

Returns: TRUE or FALSE.

Remarks: This method draws (blits) the internal buffer of the CNCSRenderer object to the screen. The imagery
is drawn using the specified extents. The extents do not necessarily have to match the extents
previously specified in a call to CNCSRenderer::SetView. If they do, the entire image is drawn. If they
don’t, only the intersection between the input extents and the amount of imagery in the input buffer is
drawn.

arameters: hDeviceContext A Win32 device context
pClipRect A point to a clip rectangle describing the width and height of the draw

area
dWorldTLX The top left X world coordinate of the device.
dWorldTLY The top left Y world coordinate of the device
dWorldBRX The bottom right X world coordinate of the device
dWorldBRY The bottom right Y world coordinate of the device

Returns: An NCSError value indicating the success of the procedure.

Remarks: This static call is used to free the JPEG memory buffer returned by a call to
CNCSRenderer::WriteJPEG(UINT8 **ppBuffer, UINT32 *pBufferLength,
INT32 nQuality).

arameters: pBuffer The JPEG buffer previously returned that must now be freed.

Returns: None.
120 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

CNCSRenderer::GetHistogram
BOOLEAN CNCSRenderer::GetHistogram(INT32 nBand, UINT32 Histogram[256])

CNCSRenderer::GetTransparent
void CNCSRenderer::GetTransparent(BOOLEAN *pbTransparent)

Remarks: Get the histogram calculated for a specific band in the image.

arameters: nBand The band for which to retrieve the associated histogram.
Histogram A UINT32[256] Histogram array to fill Hi.

Returns: BOOLEAN TRUE or FALSE

Remarks: Obtains the current transparency status from the renderer.

arameters: BOOLEAN buffer for the returned transparency status.

Returns: None.
ECW JPEG 2000 SDK - 121

Chapter 7 API reference ● Methods:

P

P

CNCSRenderer::ReadImage
NCSError CNCSRenderer::ReadImage(IEEE8 dWorldTLX,

IEEE8 dWorldTLY,
IEEE8 dWorldBRX,
IEEE8 dWorldBRY,
INT32 nDatasetTLX,
INT32 nDatasetTLY,
INT32 nDatasetBRX,
INT32 nDatasetBRY,
INT32 nWidth,
INT32 nHeight)

CNCSRenderer::ReadImage
NCSError CNCSRenderer::ReadImage(INT32 nWidth, INT32 nHeight)

Remarks: Reads the current image into an internal buffer ready for blitting to a device context. In progressive
mode, when a RefreshUpdate callback arrives from the network, the client should call ReadImage
to transfer the pending imagery from the network into an internal buffer. Once this is done, the client
can then call DrawImage at any time to draw from the internal buffer into the device. In non-
progressive mode the client should call ReadImage, then immediately call DrawImage to draw to
the device. This overloaded version of the function is called in progressive mode only.

arameters: dWorldTLX The view world top left X coordinate (must match the SetView top left
X)

dWorldTLY The view world top left Y coordinate (must match the SetView top left
Y)

dWorldBRX The view world bottom right X coordinate (must match the SetView
bottom right X)

dWorldBRY THe view world bottom right Y coordinate (must match the SetView
bottom right Y)

nDatasetTLX The dataset top left X coordinate
nDatasetTLY The dataset top left Y coordinate
nDatasetBRX The dataset bottom right X coordinate
nDatasetBRY The dataset bottom right Y coordinate
nWidth The view width (must match the SetView width)
nHeight The view height (must match the SetView height)

Returns: NCS_SUCCESS if successful, or an NCSError value if an error occurs.

Remarks: Reads the current image into an internal buffer ready for blitting to a device context. In progressive
mode, when a RefreshUpdate callback arrives from the network, the client should call ReadImage
to transfer the pending imagery from the network into an internal buffer. Once this is done, the client
can then call DrawImage at any time to draw from the internal buffer into the device. In non-
progressive mode the client should call ReadImage, then immediately call DrawImage to draw to
the device. This overloaded version of the function is called in progressive mode only.

arameters: nWidth The view width (must match the SetView width)
nHeight The view height (must match the SetView height)

Returns: NCS_SUCCESS if successful, or an NCSError value if an error occurs.
122 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSRenderer::ReadImage
NCSError CNCSRenderer::ReadImage(NCSFileViewSetInfo *pViewSetInfo)

RCNCSRenderer::ReadLineBGR
NCSEcwReadStatus CNCSRenderer::ReadLineBGR(UINT8 *pBGRTriplet) [virtual]

CNCSRenderer::ReadLineBIL
NCSEcwReadStatus CNCSRenderer::ReadLineBIL(UINT8 **ppOutputLine) [virtual]

CNCSRenderer::ReadLineRGB
NCSEcwReadStatus CNCSRenderer::ReadLineRGB(UINT8 *pRGBTriplet) [virtual]

Remarks: Reads the current image into an internal buffer ready for blitting to a device context. In progressive
mode, when a RefreshUpdate callback arrives from the network, the client should call
ReadImage to transfer the pending imagery from the network into an internal buffer. Once this is
done, the client can then call DrawImage at any time to draw from the internal buffer into the device.
In non-progressive mode the client should call ReadImage, then immediately call DrawImage to
draw to the device.

arameters: pViewSetInfo A pointer to the NCSFileViewSetInfo struct passed to the RefreshUpdate
function.

Returns: NCS_SUCCESS if successful, or an NCSError value if an error occurs.

Remarks: Read a line from the current view in BGR format. Optionally collect histograms based on the most
recent call to CNCSRenderer::CalcHistograms.

arameters: pBGRTriplet A pointer to a buffer which receives a scanline of BGR packed image data.

Returns: NCSEcwReadStatus Read status code.

Remarks: Read a line from the current view in BIL (Band Interleaved by Line) format. Optionally collect
histograms based on the most recent call to CNCSRenderer::CalcHistograms.

arameters: ppOutputLine A pointer to an array of band buffers which receive a scanline of BIL image data.

Returns: NCSEcwReadStatus Read status code.

Remarks: Read a line from the current view in RGB format. Optionally collect histograms based on the most
recent call to CNCSRenderer::CalcHistograms.

arameters: pRGBTriplet A pointer to a buffer which receives a scanline of RGB packed image data.

Returns: NCSEcwReadStatus Read status code.
ECW JPEG 2000 SDK - 123

Chapter 7 API reference ● Methods:

P

P

P

P

CNCSRenderer::SetBackgroundColor
void CNCSRenderer::SetBackgroundColor(COLORREF nBackgroundColor)

CNCSRenderer::SetTransparent
void CNCSRenderer::SetTransparent(BOOLEAN bTransparent)

CNCSRenderer::WriteJPEG
NCSError CNCSRenderer::WriteJPEG(UINT8 **ppBuffer, UINT32 *pBufferLength,

INT32 nQuality)

CNCSRenderer::WriteJPEG
NCSError CNCSRenderer::WriteJPEG(char *pFilename, INT32 nQuality)

Remarks: Sets the background color of the display area, which is initialised as the system default background
color. In non-transparent mode, this color will be drawn to the display area background before the
rendered image.

arameters: nBackgroundColor COLORREF value specifying the desired color

Remarks: Specifies whether the renderer is responsible for doing a background fill before drawing
imagery. If the renderer is being used in an application that contains other image layers, the
transparency mode should be set to FALSE and the application should do the work of
managing the display. If the renderer is incorporated into a single-layered control then it is
appropriate to set the transparency mode to TRUE to reduce the amount of work required
from the renderer’s container.

arameters: bTransparent BOOLEAN value specifying whether or not to draw the image
transparently

Returns: None.

Remarks: Writes a JPEG file based on the current view, and stores it in a buffer that can be output to file later, or
used for some other purpose. This function can only be called successfully if the current view has been
opened on an ECW or JPEG 2000 file in non-progressive mode.

arameters: ppBuffer Pointer to a buffer in which to store the JPEG output.
pBufferLength Pointer to an integer buffer that receives the length of the created

JPEG buffer.
nQuality Integer specified of JPEG output quality.

Returns: NCSError value, NCS_SUCCESS or any applicable error code.

Remarks: Writes the current view to a JPEG file with the specified filename. This function can only be called
successfully if the current view has been opened on an ECW or JPEG 2000 file in non-progressive
mode.

arameters: pFilename (char *) ASCII string specifying the output filename.
nQuality Desired quality of the output JPEG file.

Returns: NCSError value, NCS_SUCCESS or any applicable error code.
124 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods:

P

CNCSRenderer::WriteWorldFile
NCSError CNCSRenderer::WriteWorldFile(char *pFilename)

Remarks: This call is used to write a world file containing the georeferencing information for the current view.
The world file written is given the same name as the input filename, excepting that its extension is
constructed from the first and third letters of the extension of the input + the character ‘w’. For
example, “.jpg” becomes “.jgw” and “.tif” becomes “.tfw”.

arameters: pFilename The filename on which to base the output world filename.

Returns: NCSError value, NCS_SUCCESS or any applicable error code.
ECW JPEG 2000 SDK - 125

Chapter 7 API reference ● Class Reference: CNCSError

P

Class Reference: CNCSError
The CNCSError class is used for the purpose of detailed error reporting. The class wraps an
NCSError enum value, and allows detailed control of error logging level and error messaging.
Many of the methods of the CNCSFile and CNCSRenderer classes that you will be using to build
your ECW JPEG 2000 SDK application with the C++ API return a CNCSError value which you
will find helpful in handling problems and debugging your work.

Construction and destruction

Constructor
CNCSError::CNCSError(const NCSError eError = NCS_SUCCESS,

char *pFile = __FILE__,
int nLine = __LINE__,
CNCSLog::NCSLogLevel eLevel = CNCSLog::LOG_LEVEL1,
const char *pText = (char *)NULL)

This overloaded constructor has a large number of initialization parameters, all with sensible
default values. In the main you will probably be interested in using the eError and pText
parameters within your own classes.

CNCSError::CNCSError(const CNCSError &Error)

This copy constructor initializes a new CNCSError object from an existing object.

Destructor
CNCSError::~CNCSError()

Releases all resources associated with a CNCSError object.

Methods

CNCSError::GetErrorMessage
char *CNCSError::GetErrorMessage(char *pFormat = NULL, ...)

Remarks: Obtain a descriptive error message from this CNCSError object with optional formatting.

arameters: pFormat Optional printf style format string
... Optional additional arguments for printf style format string

Returns: Formatted ASCII string describing the error that has occurred.
126 - ECW JPEG 2000 SDK

Chapter 7 API reference ● Methods

P

P

P

P

P

CNCSError::GetErrorNumber
NCSError CNCSError::GetErrorNumber() [inline]

CNCSError::Log
void Log(CNCSLog::NCSLogLevel eLevel)

CNCSError::operator=
CNCSError &CNCSError::operator=(const CNCSError &Error)

CNCSError::operator==
bool CNCSError::operator==(const NCSError eError) [inline]

CNCSError::operator==
bool CNCSError::operator==(const CNCSError &Error) [inline]

Remarks: Returns the NCSError enum value associated with this CNCSError object.

arameters: None.

Returns: Associated NCSError enum value.

Remarks: Log the error to the log file, if the logging level is greater than or equal to the level specified by
eLevel.

arameters: eLevel Log level required before the error should be logged. This can have the values LOG_LOW = 0,
LOG_MED = 1, LOG_HIGH = 2, or LOG_HIGHER = 3

Returns: None.

Remarks: Overloaded assignment operator.

arameters: Error Reference to the error to be assigned.

Returns: Reference to the newly altered error object.

Remarks: Compare this CNCSError object to an NCSError enum value.

arameters: eError NCSError enum value to compare the object to.

Returns: TRUE if the object’s error number is the same as the NCSError enum value.

Remarks: Compare two CNCSError objects.

arameters: Error CNCSError object to compare this object with.

Returns: TRUE if the two objects have the same error number (only the error number is compared in checking
equality).
ECW JPEG 2000 SDK - 127

Chapter 7 API reference ● Methods

P

P

CNCSError::operator!=
bool CNCSError::operator!=(const NCSError eError) [inline]

CNCSError::operator!=
bool CNCSError::operator!=(const CNCSError &Error) [inline]

Remarks: Overloaded inequality operator checking whether a CNCSError object and an NCSError enum
value have different types.

arameters: eError NCSError enum value for comparison

Returns: TRUE if this object and the NCSError enum value are not of the same type

Remarks: Overloaded inequality operator checking whether two CNCSError objects are not equal.

arameters: Error CNCSError object to compare to this object

Returns: TRUE if the two objects do not share the same error number (only the error number is
compared in checking inequality).
128 - ECW JPEG 2000 SDK

8

Geocoding
information

An ECW or JPEG 2000 compressed image file can contain embedded geocoding information.
This information can be retrieved when the image is decompressed. Geocoding provides a
georeference, indicating where the image is geographically located. Geocoding enables
compressed ECW or JPEG 2000 files to form mosaics of very large images. The geocoding
information consists of the components described in the following sections.

• Datum
• Projection
• Units
• Registration point

Datum
The datum represents a mathematical approximation of the shape of earth's surface at a specified
location. Common datums are:

• Geocentric Datum of Australia (GDA94)
• World Geodetic System (WGS72 and WGS84)
• North American Datum (NAD27 and NAD83)

Projection
A map projection is the mathematical function used to plot a point on an ellipsoid on to a plane
sheet of paper. There are probably twenty or thirty different types of map projections commonly
used. These try to preserve different characteristics of the geometry of the earth's surface. The
following is a list of common projection types:
ECW JPEG 2000 SDK - 129

Chapter 8 Geocoding information ● Units
• Albers Equal Area
• Azimuthal Equidistant
• Conic Equidistant
• Lambert Conformal Conic
• Modified Polyconic
• Mollweide
• Mercator
• Regular Polyconic
• Sinusoidal
• Stereographic
• Transverse Mercator
• Van der Grinten.

Units
The measurement units are usually set for the specific projection. They can be:

• Meters
• Feet (US survey feet where 1 meter = 39.37 inches, or 1 foot = 0.30480061 meters)
• Degrees Latitude/Longitude.

Note: The default setting for RAW images. i.e those that do not contain geocoding
information, is meters.
130 - ECW JPEG 2000 SDK

Chapter 8 Geocoding information ● Registration point
Registration point
The projection, datum and units information tell us the shape of and the area covered by the image,
but they do not show where it is located. To convey this information we require a single
registration point with world coordinates on the image. For all ECW compressed images this
registration point is the origin or top left corner of the top left cell (0,0). The following diagram
shows the 0,0 position of the registration point in an image.

Not all images have their registration point at the top left cell (0,0), as required by the ECW
format. Given the cell sizes and the actual reference point it is possible to calculate the world
coordinates at point 0,0.

For example, consider an image that has a registration point at cell 5,6 with world coordinates
480E, 360N. If the X and Y cell size is 1 meter, the world coordinates at cell 0,0 will be (480+5)E,
(360-6)N, i.e. 485E, 354N.

Geodetic Transform Database
The Geodetic Transform Database is supplied with the ECW JPEG 2000 SDK. This database is
part of the general Geodetic Transform package (known as GDT), incorporated into the ECW
JPEG 2000 SDK. The GDT package performs all coordinate transformations. This includes
calculations of easting/northing from latitude/longitude, and the reverse, for a point with a given
map projection and datum. GDT provides projection parameters and all mathematical software to
perform the transform calculations.

Cells X

C
ells Y

Registration point (0,0)

0

2
3

1

1 2 3 4
ECW JPEG 2000 SDK - 131

Chapter 8 Geocoding information ● GDT file formats
GDT file formats
The GDT database stores all associated files in the runtime/GDT_DATA directory. The files in
this directory define all the datums and projections known to the ECW JPEG 2000 SDK. These
definition files are plain text ASCII format, with the “.dat” file extension. Data files in the
GDT_DATA directory have a similar format.

There is one logical record per line in the file. The first line of the file is an information line,
describing the contents of each field in the file. For example, the first line of the file mercator.dat:

proj_name, false_north, false_east, scale_factor, centre_merid

This line tells us there are 5 fields in each record; the Projection Name (proj_name), the False
Northing (false_north), the False Easting (false_east), the Scale Factor (scale_factor),
and the Central Meridian (centre_merid).

The GDT database stores angular values as expressed in radians. For example, the first data record
(found on the second line of the file) of the file mercator.dat:

MR1630N, 1000000.0, 1000000.0, 0.959078718808146,
0.692313937206194

This line tells us that the central meridian for projection MR1630N is 0.692313937206194
radians, which is equal to:

(0.692313937206194 x 180) / PI = 39.6666666 degrees = 39 degrees 40 minutes East.

How the ECW JPEG 2000 SDK reads
geocoding information

The SDK represents registration, projection and datum information internally using fields in the
NCSFileViewFileInfoEx struct. These include the world coordinates of the raster origin, the
size of dataset cells in world units, the type of linear units used, the rotation of the raster dataset in
degrees (shear transformations are unsupported) and the ER Mapper style projection and datum
strings.

Embedded Geography Markup Language (GML) metadata
The Geography Markup Language is a set of XML schemas for recording and transferring
geographic data. GML has been developed by the OpenGIS Consortium in consultation with
members and the International Standards Organisation. The JPEG 2000 working group have
discussed a standard for storing OGC Geography Markup Language (GML) inside a JP2 file XML
box. This standard defines GML metadata in a JP2 compatible JPX file with a “.jp2” file
extension.

A Standard Feature Flag set at a value of 67 should signal the use of GML. This geo-locating
method requires a minimal set of GML to locate a JPEG 2000 image. A JPEG 2000_GeoLocation
XML element stores the JPEG 2000 geolocation information. While the XML box may also
132 - ECW JPEG 2000 SDK

Chapter 8 Geocoding information ● Embedded Geography Markup Language (GML)
contain additional GML elements, the first element must be the JPEG 2000_GeoLocation. There
may also be additional XML boxes, containing additional XML elements. In any case, the decoder
will use the first JPEG 2000_GeoLocation GML element found in the file.

The JPEG2000_GeoLocation element contains a RectifiedGrid construct. The
RectifiedGrid has an id attribute of JPEG2000_Geolocation_1, with a dimension attribute
equal to 2.

The standard requires an Origin element, with an id attribute of JPEG2000_Origin. The Point
attribute specifies the coordinate of the bottom-left corner of the bottom-left cell in the image. The
srcName attribute is an immediate EPSG code (recommended). Where an existing EPSG code is
not available, srsName refers to a full SpatialReferenceSystem element definition within
the same JP2 XML box.

A pair of offsetVector elements defines the vertical and horizontal cell “step” vectors. These
vectors can include a rotation, but cannot include a shear.

Conformant readers will ignore any other elements found within a JPEG2000_GeoLocation
element. The GML specification is available for reference at: http://www.opengis.org/

GML examples
The following JPEG 2000_GeoLocation GML refers to a JP2 file with an EPSG code of 32610
(PCS_WGS84_UTM_zone_10N), origin 631333.108344E, 4279994.858126N, a cell size of X=4
and Y=4, and a 0.0 rotation.

<?xml version=”1.0” encoding=”UTF-8”?>
< JPEG 2000_GeoLocation >
<gml:RectifiedGrid xmlns:gml=”http://www.opengis.net/gml” gml:id=”
JPEG 2000_GeoLocation _1” dimension=”2”>
<gml:origin>
<gml:Point gml:id=”JPEG 2000_Origin” srsName=”epsg:32610”>
<gml:coordinates>631333.108344,
4279994.858126</gml:coordinates>
</gml:Point>
</gml:origin>
<gml:offsetVector gml:id=”p1”>0.0,4.0,0.0</gml:offsetVector>
<gml:offsetVector gml:id=”p2”>4.0,0.0,0.0</gml:offsetVector>
</gml:RectifiedGrid>
</JPEG 2000_GeoLocation>

The following JPEG 2000_GeoLocation GML refers to a JP2 file with an EPSG code of 32610
(PCS_WGS84_UTM_zone_10N), origin 631333.108344E, 4279994.858126N, a cell size of X=4
and Y=4, and a rotation of 20.0 degrees clockwise.

<?xml version=”1.0” encoding=”UTF-8”?>
< JPEG 2000_GeoLocation >
<gml:RectifiedGrid xmlns:gml=”http://www.opengis.net/gml” gml:id=”
JPEG 2000_GeoLocation _1” dimension=”2”>
<gml:origin>
<gml:Point gml:id=”JPEG 2000_Origin” srsName=”epsg:32610”>
<gml:coordinates>631333.108344,
4279994.858126</gml:coordinates>
ECW JPEG 2000 SDK - 133

Chapter 8 Geocoding information ● Embedded Geography Markup Language (GML)
</gml:Point>
</gml:origin>
<gml:offsetVector gml:id=”p1”1.3680805733037027,
3.7587704831464577,0.0</gml:offsetVector>
<gml:offsetVector gml:id=”p2”>3.7587704831464577,
-1.3680805733037027,0.0</gml:offsetVector>
</gml:RectifiedGrid>
</JPEG 2000_GeoLocation>

The equivalent registration using a “.jpw” World file would be:

3.7587704831464577
1.3680805733037027
1.3680805733010719
-3.7587704831392297
631335.1083436138
4279992.8581256131

The following example C code demonstrates how to output a complete JPEG 2000_GeoLocation
GML stream, given an upper-left image registration point, x and y cell sizes, rotation angle and
image dimensions. Note that the registration point is the top-left corner of the top-left cell.

#define Deg2Rad(x) (x * M_PI / 180.0)
void OutputJPEG2000_GeoLocation(FILE *pFile,
UINT32 nEPSGCode,
double dRegistrationX,
double dRegistrationY,
double dCellSizeX,
double dCellSizeY,
double dCWRotationDegrees,
UINT32 nImageWidth,
UINT32 nImageHeight)
{
double p1[] = { (sin(Deg2Rad(dCWRotationDegrees)) * dCellSizeX),
(cos(Deg2Rad(dCWRotationDegrees)) * dCellSizeY), 0.0 };
double p2[] = { (cos(Deg2Rad(dCWRotationDegrees)) * dCellSizeX),
-(sin(Deg2Rad(dCWRotationDegrees)) * dCellSizeY), 0.0 };
fprintf(pFile, “<?xml version=\”1.0\” encoding=\”UTF-8\”?>\r\n”);
fprintf(pFile, “<JPEG 2000_GeoLocation>\r\n”);
fprintf(pFile, “ <gml:RectifiedGrid xmlns:gml=\”http://www.opengis.net/gml””
“gml:id=\”JPEG 2000_GeoLocation_1\” dimension=\”2\”>\r\n”);
fprintf(pFile, “ <gml:origin>\r\n”);
fprintf(pFile, “ <gml:Point gml:id=\”JPEG 2000_Origin\” srsName=\”epsg:%ld\”>\r\
n”, nEPSGCode);
fprintf(pFile, “ <gml:coordinates>%lf,%lf</gml:coordinates>\r\n”,
dRegistrationX - nImageHeight * p1[0], dRegistrationY - nImageHeight *
p1[1]);
fprintf(pFile, “ </gml:Point>\r\n”);
fprintf(pFile, “ </gml:origin>\r\n”);
fprintf(pFile, “ <gml:offsetVector gml:id=\”p1\”>%lf,%lf,%lf</gml:offsetVector>\
r\n”, p1[0], p1[1], p1[2]);
fprintf(pFile, “ <gml:offsetVector gml:id=\”p2\”>%lf,%lf,%lf</gml:offsetVector>\
r\n”, p2[0], p2[1], p2[2]);
fprintf(pFile, “ </gml:RectifiedGrid>\r\n”);
fprintf(pFile, “</JPEG 2000_GeoLocation>\r\n”);
}

134 - ECW JPEG 2000 SDK

Chapter 8 Geocoding information ● Embedded “GeoTIFF” metadata
When the ECW JPEG 2000 SDK opens a JPEG 2000 file containing GML metadata in the format
above, the georeferencing information is automatically translated into the components of an
NCSFileViewFileInfoEx data structure which can be queried from the open file using
NCScbmGetViewFileInfoEx (via the C API) or CNCSFile::GetFileInfo (via the C++
API). The GML data itself is not exposed to the application programmer.

Embedded “GeoTIFF” metadata
Another proposed standard for embedding georeferencing information is to place a degenerate
GeoTIFF file in a JPEG 2000 UUID box. This standard was originally proposed under the name
“GeoJP2” by Mapping Science, Inc.

GeoTIFF is a well-established standard for embedding georeferencing information in TIFF
(Tagged Image File Format) using header tags, which in turn index a further level of metadata
stored in GeoKeys. Linear map units, projection and datum information, pixel scales, coordinate
transformations and dataset tie points are all examples of the kind of information that can be stored
in a GeoTIFF file.

The ECW JPEG 2000 SDK supports the reading of georeferencing information from a JPEG 2000
file stored in a UUID header box in the form of a degenerate 1 x 1 GeoTIFF file. The information
is processed into ER Mapper style projection, datum, linear units and registration information. The
table below indicates which GeoTIFF tags and GeoKeys are supported by the SDK.

Supported GeoTIFF tags:
ModelTiePoint, ModelPixelScale, ModelTransformation, GeoKeyDirectory,
Geo-ASCIIParams, GeoDoubleParams.

Supported GeoTIFF GeoKeys:
GTRasterType, GTModelType, GeographicType, ProjectedCSType,
GeogLinearUnits, ProjLinearUnits

After the ECW JPEG 2000 SDK opens a JPEG 2000 file which contains an embedded GeoTIFF
file, the processed georeferencing information is not available to the SDK user in GeoTIFF
format, but can instead be queried from an NCSFileViewFileInfoEx struct obtained from a call
to NCScbmGetViewFileInfoEx in the C API or to CNCSFile::GetFileInfo in the C++
API.

Support for “World” files
The ECW JPEG 2000 SDK also supports image registration information for a JPEG 2000 file,
stored as the matrix elements of an affine transformation in a six-valued “world” file located in the
same directory as the input JPEG 2000 file.

These world files are a widely accepted standard for storing the geographic registration of an
image.
ECW JPEG 2000 SDK - 135

Chapter 8 Geocoding information ● Configuring the use of geocoding data for JPEG
The format of a world file is usually

• X scaling factor
• Y rotation factor
• X rotation factor
• Y scaling factor
• X translation value
• Y translation value

where the values are floating point numbers expressed in decimal format. Whilst the SDK makes
some allowances for processing JPEG 2000 world files with variations on this format if you are
experiencing problems with world file processing it is advisable to use a text editor to edit the file
so it has the form above.

The six values provide the SDK with enough information to derive a rotation value, dataset cell
sizes in world linear units, and a single registration point for the image. These can be queried from
an NCSFileViewFileInfoEx struct (obtained in the same way as above in the sections on GML
and GeoTIFF metadata).

World files are named according to a comparatively strict convention where the name of the file is
the same as that of the image file for which it provides registration information, except that its 3
character extension is constructed by taking the first and third characters from that of the image
file and appending the character ‘w’. The ECW JPEG 2000 SDK only supports world files in
tandem with JPEG 2000 files with file extension “.jp2”, “.jpx”, or “.jpf”, and these cases
respectively correspond to world files with file extension “.j2w”, “.jxw”, and “.jfw”. You may
need to rename world files produced by third party applications in order to meet this requirement.

Configuring the use of geocoding data for JPEG 2000 files
Given that there are three forms of geographic metadata supported by the SDK, some attention has
been given to allowing the application developer to configure which metadata is processed on
input from a JPEG 2000 file or output to a JPEG 2000 file. Configuration is achieved using the
CNCSFile::SetParameter(Parameter eType, UINT32 nValue) method.

This method is used to configure many different aspects of SDK usage, but in this case we are
interested in the case where eType has the value JP2_GEODATA_USAGE. When this is the value of
the first argument, there are sixteen valid values for the second argument nValue:

nValue Processing of geographic metadata on file I/O
JP2_GEODATA_USE_NONE No processing of metadata

JP2_GEODATA_USE_WLD_ONLY World file only
JP2_GEODATA_USE_GML_ONLY GML header box only
JP2_GEODATA_USE_PCS_ONLY “GeoTIFF” UUID box only
JP2_GEODATA_USE_WLD_GML World file, then GML box
JP2_GEODATA_USE_WLD_PCS World file, then GeoTIFF box
JP2_GEODATA_USE_GML_WLD GML box, then world file
136 - ECW JPEG 2000 SDK

Chapter 8 Geocoding information ● EPSG codes
The value chosen applies to processing both on opening any JPEG 2000 file and on compressing
to a new JPEG 2000 file, and once set will apply to other files opened or compressed during the
execution of an SDK application. Where a precedence is established in configuration (e.g. for
nValue equal to JP2_GEODATA_USE_WLD_GML_PCS), on input the metadata available will be
established and the existing metadata that appears first in the order of precedence will be used to
the exclusion of any other metadata.

On compression to JPEG 2000 output, all the currently configured types of metadata are written
(e.g. for nValue equal to JP2_GEODATA_USE_WLD_GML_PCS, a world file will be written to the
output directory, and GML and GeoTIFF header boxes will be written to the JPEG 2000 file).
Because there is no explicit mapping between the data supported by each system of storing
geographical information, there is no guarantee that the geographical metadata stored will be the
same.

Choosing to store georeferencing information in one case in a world file, and in another in a
GeoTIFF header box, may result in different interpretations of the stored information when the file
is re-read by the SDK or by a third party application. It is up to the application developer to select
the most appropriate use of geographical metadata for their ECW JPEG 2000 SDK application.

EPSG codes
The ECW JPEG 2000 SDK uses ER Mapper's georeferencing system internally, in which
coordinate systems are specified using a pair of strings naming the projection and datum (e.g.
projection "NUTM11", datum "NAD27" for UTM Zone 11 using the North American Datum
1927).

The European Petroleum Survey Group (EPSG) produces a database of codes associated with
particular geographical and projected coordinate systems, and these codes have been used in the
GeoTIFF specification and also in various OGC specifications as a means of specifying the spatial
reference of datasets.

When the ECW JPEG 2000 SDK writes JPEG 2000 files, it has the option of creating the GML
and GeoTIFF UUID (“GeoJP2”) header boxes. If the output data is spatially referenced by ER
Mapper projection and datum strings, the SDK converts these strings to a corresponding EPSG
code which is embedded in the GML or GeoJP2 header boxes, and can subsequently be re-read by
ER Mapper and third party software.

JP2_GEODATA_USE_GML_PCS GML box, then GeoTIFF box
JP2_GEODATA_USE_PCS_WLD GeoTIFF box, then world file
JP2_GEODATA_USE_PCS_GML GeoTIFF box, then GML box

JP2_GEODATA_USE_WLD_GML_PCS World file, then GML, then GeoTIFF
JP2_GEODATA_USE_WLD_PCS_GML World file, then GeoTIFF, then GML
JP2_GEODATA_USE_GML_WLD_PCS GML, then world file, then GeoTIFF
JP2_GEODATA_USE_GML_PCS_WLD GML, then GeoTIFF, then world file
JP2_GEODATA_USE_PCS_WLD_GML GeoTIFF, world file, then GML
JP2_GEODATA_USE_PCS_GML_WLD GeoTIFF, GML, then world file
ECW JPEG 2000 SDK - 137

Chapter 8 Geocoding information ● EPSG codes
The mapping between ER Mapper projection and datum strings, and EPSG codes, is not entirely
one-to-one, so at times it may be necessary for you to specify specific codes manually. You can do
this in one of two ways:

• by using the shorthand value “EPSG:<code>” in your output projection and datum strings,
which will cause the value <code> to be embedded in output JPEG 2000 files e.g.

FileInfo.szProjection = "EPSG:32700";
FileInfo.szDatum = "EPSG:32700";

• by creating a file called "PcsKeyProjDatum.dat" in which custom mappings between
projection and datum strings are stored. The lines in the file should have the format

<code>, <projection string>, <datum string>, <notes and comments>
where <code> is the applicable PCS or GCS code, the projection and datum strings are those you
wish to map to this code, and notes and comments allows you to briefly record the code's use, e.g.
32700, CUSTPROJ, CUSTDAT, output to our user-defined coordinate system

Once you have created this file and the applicable content, you should submit its path (without the
file name) to your SDK application using either the NCSSetGDTPath or the
CNCSFile::SetGDTPath calls, if your application uses the C or C++ APIs respectively.
138 - ECW JPEG 2000 SDK

9

USA Map
Projections

The United States of America use a system of map projections for various regions. This system is
known as the “State Plane Coordinate System (SPCS)”. The majority of these projections are
Transverse Mercator projections, used for States with predominantly north to south extent. Some
of these are broken down into a number of zones within the State. The Lambert Conformal Conic
projection is used for most other States, with the exception of the panhandle of Alaska, which is
mapped using the Oblique Mercator projection.

Older maps are projected onto the Clarke 1866 spheroid with tie point at Meade’s Ranch in Kansas
(datum NAD27). More recent maps are projected onto the 1983 datum (datum NAD83).

A list of currently supported projections appears below. Contact ER Mapper if the projection you
require is not included here.

Name Projection Type Projection Datum
Alabama East tranmerc TMALABEF NAD27
Alabama West tranmerc TMALABWF NAD27
Alaska State Plane 1 obmerc_b OMALSK1M NAD27
Alaska State Plane 2 tranmerc TMALSK2M NAD27
Alaska State Plane 3 tranmerc TMALSK3M NAD27
Alaska State Plane 4 tranmerc TMALSK4M NAD27
Alaska State Plane 5 tranmerc TMALSK5M NAD27
Alaska State Plane 6 tranmerc TMALSK6M NAD27
Alaska State Plane 7 tranmerc TMALSK7M NAD27
Alaska State Plane 8 tranmerc TMALSK8M NAD27
Alaska State Plane 9 tranmerc TMALSK9M NAD27
Arizona East tranmerc TMARIZEF NAD27
ECW JPEG 2000 SDK - 139

Chapter 9 USA Map Projections ●
Arizona Central tranmerc TMARIZCF NAD27
Arizona West tranmerc TMARIZWF NAD27
Arkansas North lamcon2 L2ARKNF83 NAD83
Arkansas South lamcon2 L2ARKSF83 NAD83
California I lamcon2 L2CAL1F83 NAD83
California II lamcon2 L2CAL2F83 NAD83
California III lamcon2 L2CAL3F83 NAD83
California IV lamcon2 L2CAL4F83 NAD83
California V lamcon2 L2CAL5F83 NAD83
California VI lamcon2 L2CAL6F83 NAD83
California VII lambert2 LM2CAL7F NAD27
Colorado North lamcon2 L2COLNF83 NAD83
Colorado Central lamcon2 L2COLCF83 NAD83
Colorado South lamcon2 L2COLSF83 NAD83
Connecticut State lamcon2 L2CONNF83 NAD83
Delaware State tranmerc TMDELWRF NAD27
Florida North lamcon2 L2FLANF83 NAD83
Florida East tranmerc TMFLRAEF NAD27
Florida West tranmerc TMFLRAWF NAD27
Georgia East tranmerc TMGEOREF NAD27
Georgia West tranmerc TMGEORWF NAD27
Hawaii State Plane 1 tranmerc TMHAWI1F NAD27
Hawaii State Plane 2 tranmerc TMHAWI2F NAD27
Hawaii State Plane 3 tranmerc TMHAWI3F NAD27
Hawaii State Plane 4 tranmerc TMHAWI4F NAD27
Hawaii State Plane 5 tranmerc TMHAWI5F NAD27
Idaho East tranmerc TMIDAEFT NAD27
Idaho Central tranmerc TMIDACFT NAD27
Idaho West tranmerc TMIDAWFT NAD27
Illinois East tranmerc TMILLEFT NAD27
Illinois West tranmerc TMILLWFT NAD27
Indiana East tranmerc TMINDEFT NAD27
Indiana West tranmerc TMINDWFT NAD27
Iowa North lamcon2 L2IOWNF83 NAD83
Iowa South lamcon2 L2IOWSF83 NAD83
Kansas North lamcon2 L2KANNF83 NAD83
Kansas South lamcon2 L2KANSF83 NAD83
Kentucky North lamcon2 L2KYNFT83 NAD83
Kentucky South lamcon2 L2KYSFT83 NAD83
Louisiana North lamcon2 L2LANFT83 NAD83
Louisiana South lamcon2 L2LASFT83 NAD83
Louisiana Offshore lamcon2 L2LAOFT83 NAD83

Name Projection Type Projection Datum
140 - ECW JPEG 2000 SDK

Chapter 9 USA Map Projections ●
Maine East tranmerc TMMAINEF NAD27
Maine West tranmerc TMMAINWF NAD27
Maryland State lamcon2 L2MARYF83 NAD83
Massachusetts Mainland lamcon2 L2MASMF83 NAD83
Massachusetts Island (NAD27) lamcon2 L2MASIF27 NAD27
Massachusetts Island (NAD83) lamcon2 L2MASIF83 NAD83
Michigan East (old) tranmerc TMMICHEF NAD27
Michigan Central (old) tranmerc TMMICHCF NAD27
Michigan West (old) tranmerc TMMICHWF NAD27
Michigan North (current) lamcon2 L2MICNF83 NAD83
Michigan Central (current) lamcon2 L2MICCF83 NAD83
Michigan South (current) lamcon2 L2MICSF83 NAD83
Minnesota North lamcon2 L2MINNF83 NAD83
Minnesota Central lamcon2 L2MINCF83 NAD83
Minnesota South lamcon2 L2MINSF83 NAD83
Mississippi East (NAD27) tranmerc TMMISSEF NAD27
Mississippi East (NAD83) tranmerc TMMISSEM NAD83
Mississippi West (NAD27) tranmerc TMMISSWF NAD27
Mississippi West (NAD83) tranmerc TMMISSWM NAD83
Missouri East tranmerc TMMISOEF NAD27
Missouri Central tranmerc TMMISOCF NAD27
Missouri West tranmerc TMMISOWF NAD27
Montana North lambert2 LM2MTNFT NAD27
Montana Central lambert2 LM2MTCFT NAD27
Montana South lambert2 LM2MTSFT NAD27
Nebraska North lambert2 LM2NEBNF NAD27
Nebraska South lambert2 LM2NEBSF NAD27
Nevada East (NAD27) tranmerc TMNEVAEF NAD27
Nevada East (NAD83) tranmerc TMNEVAEM NAD83
Nevada Central (NAD27) tranmerc TMNEVACF NAD27
Nevada Central (NAD83) tranmerc TMNEVACM NAD83
Nevada West (NAD27) tranmerc TMNEVAWF NAD27
Nevada West (NAD83) tranmerc TMNEVAWM NAD83
New Hampshire tranmerc TMNEWHFT NAD27
New Jersey tranmerc TMNEWJFT NAD27
New Mexico East tranmerc TMNEWMEF NAD27
New Mexico Central tranmerc TMNEWMCF NAD27
New Mexico West tranmerc TMNEWMWF NAD27
New York State East tranmerc TMNEWYEF NAD27
New York State Central tranmerc TMNEWYCF NAD27
New York State West tranmerc TMNEWYWF NAD27
New York Long Island lamcon2 L2NEWYF83 NAD83

Name Projection Type Projection Datum
ECW JPEG 2000 SDK - 141

Chapter 9 USA Map Projections ●
North Carolina lamcon2 L2NCAFT83 NAD83
North Dakota North lamcon2 L2NDNFT83 NAD83
North Dakota South lamcon2 L2NDSFT83 NAD83
Ohio North lamcon2 L2OHINF83 NAD83
Ohio South lamcon2 L2OHISF83 NAD83
Oklahoma North lamcon2 L2OKLNF83 NAD83
Oklahoma South lamcon2 L2OKLSF83 NAD83
Oregon North lamcon2 L2ORENF83 NAD83
Oregon South lamcon2 L2ORESF83 NAD83
Pennsylvania North lamcon2 L2PANFT83 NAD83
Pennsylvania South lamcon2 L2PASFT83 NAD83
Puerto Rico & Virgin Islands lamcon2 L2PRVF83 NAD83
Rhode Island tranmerc TMRHODIF NAD27
South Carolina lamcon2 L2SCFT83 NAD83
South Dakota North lamcon2 L2SDNFT83 NAD83
South Dakota South lamcon2 L2SDSFT83 NAD83
Tennessee (NAD27) lamcon2 L2TENNF27 NAD27
Tennessee (NAD83) lamcon2 L2TENNF83 NAD83
Texas North (NAD27) lamcon2 L2TXNF27 NAD27
Texas North (NAD83) lamcon2 L2TXNF83 NAD83
Texas North Central lamcon2 L2TXNCF83 NAD83
Texas Central lamcon2 L2TXCF83 NAD83
Texas South Central lamcon2 L2TXSCF83 NAD83
Texas South lamcon2 L2TXSF83 NAD83
Utah North lamcon2 L2UTHNF83 NAD83
Utah Central lamcon2 L2UTHCF83 NAD83
Utah South lamcon2 L2UTHSF83 NAD83
Vermont tranmerc TMVERMTF NAD27
Virginia North lamcon2 L2VIRNF83 NAD83
Virginia South lamcon2 L2VIRSF83 NAD83
Washington North lamcon2 L2WSHNF83 NAD83
Washington South lamcon2 L2WSHSF83 NAD83
West Virginia North lamcon2 L2WVANF83 NAD83
West Virginia South lamcon2 L2WVASF83 NAD83
Wisconsin North lamcon2 L2WISNF83 NAD83
Wisconsin Central lamcon2 L2WISCF83 NAD83
Wisconsin South lamcon2 L2WISSF83 NAD83
Wyoming East tranmerc TMWYO1FT NAD27
Wyoming East Central tranmerc TMWYO2FT NAD27
Wyoming West Central tranmerc TMWYO3FT NAD27
Wyoming West tranmerc TMWYO4FT NAD27

Name Projection Type Projection Datum
142 - ECW JPEG 2000 SDK

10
Directory structure

and files
During installation, new directories are created in the Program Files directory. A new Earth
Resource Mapping directory appears (if this is the first installation of Earth Resource Mapping
software). Within the Earth Resources Mapping directory, a new ECW SDK directory contains
several subdirectories with all the constituent files. The following sections list these subdirectories
and their files:

Subdirectories and files

The \bin directory
The .bin directory contains Dynamic Link Library “.dll” files. Your system requires these files to
run applications.

The .bin directory also contains the NCSEcw_control.exe executable “.exe” file. Here is the list
of included files:

- ecw_report.exe
- NCScnet.dll
- NCSEcw.dll
- NCSEcw_control.exe
- NCSEcwC.dll
- NCSUtil.dll
ECW JPEG 2000 SDK 143

Chapter 10 Directory structure and files ● The \examples directory
Note: You can use NCSEcw_control.exe to get statistics about the client side processing
of ECW files.

The \examples directory
The examples directories contain source and project files for two compression, and three
decompression, example programs.

These programs can be built with Microsoft Visual C++ Version 6.0 or later. The Examples
directories, subdirectories and files are listed below.

\compression

\example1
- example1.c
- example1.dsp
- example1.dsw

\example2
- example2.c
- example2.dsp
- example2.dsw

\example3
- example3.cpp
- example3.dsp
- example3.dsw

\example4
- example4.cpp
- example4.dsp
- example4.dsw

\example5
- example5.cpp
- example5.dsp
- example5.dsw

\decompression

\example1
- ecw_example1.c
- Example1.dsp
- Example1.dsw
- makefile

\example2
- ecw_example2.c
144 - ECW JPEG 2000 SDK

Chapter 10 Directory structure and files ● The \examples directory
- Example2.dsp
- Example2.dsw
- makefile

\EXAMPLE3
- Example3.cpp - This is the main application source file that contains the

application class CExample3App.
- Example3.dsp - This project file contains project level information for this

example application. Other users can share this project “.dsp” file, but they
should export the makefiles locally.

- Example3.dsw
- Example3.h - This is the main header file for this example application. It

includes other projectspecific headers (including resource.h) and declares the
CExample3App application class.

- Example3.rc - This is a listing of all the Microsoft Windows resources that the
program uses. It includes the icons, bitmaps, and cursors that are stored in the
\res subdirectory. This file can be directly edited with Microsoft Visual C++.

- Example3Doc.cpp
- Example3Doc.h
- Example3View.cpp - This file contains your CExample3View class. Use

CExample3View objects to view CExample3Doc objects.
- Example3View.h - The header file declaring your CExample3View class.
- MainFrm.cpp - This file contains the frame class CMainFrame, as derived from

CFrameWnd, controlling all SDI frame features.
- MainFrm.h - This is the header file for the frame class CMainFrame, declaring

the frame feature objects.
- NCSFileDialog.cpp
- NCSFileDialog.h
- ReadMe.txt - This is a file listing late changes to these example files, plus

miscellaneous notes for this example application.
- resource.h - This is the standard header file that defines new resource IDs.

Microsoft Visual C++ reads and updates this file.
- StdAfx.cpp - This file, along with the following StdAfx.h header file, is used to

build a precompiled header “.pch” file named Example3.pch, along with a types
file named StdAfx.obj.

- StdAfx.h - This header file is used with the preceding StdAfx.cpp file to build a
precompiled header “.pch” file named Example3.pch and a precompiled types
file named StdAfx.obj.

\res

- Example3.ico - This is an icon file that provides the icon for this example
application. This icon is included by the main resource file Example3.rc.
ECW JPEG 2000 SDK - 145

Chapter 10 Directory structure and files ● The \include directory
- Example3.rc2 - This file contains resources that are not edited by Microsoft
Visual C++. You should place all your resources that are not editable by the
resource editor into this file.

- Example3Doc.ico
- Toolbar.bmp - This bitmap file creates tiled images for the toolbar. The

CMainFrame class constructs the initial toolbar and status bar. Use the resource
editor to make changes to this toolbar bitmap, then update the IDR_MAINFRAME
TOOLBAR array in Example.rc.

Note: AppWizard uses “TODO:” to indicate parts of the source code you should augment
or customize. If your application uses MFC in a shared DLL, and your application
is in a language other than the operating system’s current language, you must copy
the corresponding localized resources MFC42XXX.DLL from the Microsoft
Visual C++ CDROM onto the \system or \system32 directory, and rename it to be
MFCLOC.DLL. “XXX” stands for the language abbreviation. For example,
MFC42DEU.DLL contains resources translated to German. Without this
replacement, some interface elements in your application will remain in the
language of the operating system.

\EXAMPLE4
- example4.c
- example4.dsp
- example4.dsw
- makefile

The \include directory
The \include directory contains ECW header files for your applications. Here is the list of header
files in the \include directory:

- NCSArray.h
- NCSDefs.h
- NCSECWClient.h
- NCSECWCompressClient.h
- NCSError.h
- NCSErrors.h
- NCSEvent.h
- NCSFile.h
- NCSFileIO.h
- NCSJP2Box.h
- NCSJP2FileView.h
- NCSJPCBuffer.h
146 - ECW JPEG 2000 SDK

Chapter 10 Directory structure and files ● The \lib directory
- NCSJPCDefs.h
- NCSJPCEvent.h
- NCSJPCIOStream.h
- NCSJPCRect.h
- NCSJPCTypes.h
- NCSLog.h
- NCSMalloc.h
- NCSMemPool.h
- NCSMisc.h
- NCSMutex.h
- NCSObject.h
- NCSRenderer.h
- NCSThread.h
- NCSTimeStamp.h
- NCSTypes.h

The \lib directory
The \lib directory contains the ECW static library files used for linking during the application
build. Here is the list of static library files included in the \lib directory:

- NCScnetS.lib
- NCSEcw.lib
- NCSEcwC.lib (for linking with applications using limited compression)
- NCSEcwCu.lib (for linking with applications using unlimited compression

when using the C API)
- NCSEcwS.lib
- NCSUtil.lib
- NCSUtilS.lib

The \redistributable directory
The \redistributable directory contains the following run time Dynamic Link Library “.dll” files:

• NCScnet.dll

• NCSEcw.dll

• NCSEcwC.dll (Limited version only)

• NCSUtil.dll
ECW JPEG 2000 SDK - 147

Chapter 10 Directory structure and files ● The \testdata directory
The \testdata directory
The \testdata directory contains ECW compressed images for testing your applications. ER
Mapper uses additional information contained in the header files (those with an “.ers” extension).
Your application can ignore this additional information.

- Greyscale2.ers
- Greyscale2.jp2
- Greyscale.ecw
- Greyscale.ers
- RGBImage2.ers
- RGBImage2.jp2
- RGBImage.ecw
- RGBImage.ers

Other files in the ECW JPEG 2000 SDK
- ECW_SDK.pdf - This is the ECW JPEG 2000 SDK User Reference Guide in

PDF.
- license.txt - This is a text file of the End User License Agreement for the ECW

JPEG 2000 SDK.
- readme.txt - This text file contains the latest changes and other information for

the ECW JPEG 2000 SDK.
- Uninst.isu - This file governs uninstallation of the ECW JPEG 2000 SDK.
148 - ECW JPEG 2000 SDK

Appendix A
ECW JPEG 2000

SDK License
Agreements

There are three styles of ECW JPEG 2000 SDK license agreement.

Use of the ECW JPEG 2000 SDK with unlimited decompressing and limited compressing (less
than 500MB) for use in any commercial or free application is governed by the "ECW JPEG 2000
SDK FREE USE LICENSE AGREEMENT."

Use of the ECW JPEG 2000 SDK with unlimited decompressing and unlimited compression for
applications licensed under a GNU General Public style license ("GPL") is governed by the "ECW
JPEG 2000 SDK PUBLIC USE LICENSE AGREEMENT".

Use of the ECW JPEG 2000 SDK with unlimited decompressing and unlimited compressing for
commercial applications is governed by the "ECW JPEG 2000 SDK COMMERCIAL USE
LICENSE AGREEMENT".

For use of the ECW JPEG 2000 SDK in applications that are outside of the terms of these
agreements, including server-side applications, please contact Earth Resource Mapping Limited,
87 Colin Street, West Perth, Western Australia 6005. Tel +61 8 9388 2900; Fax +61 8 9388 2901;
email: tony.clark@ermapper.com.au.
ECW JPEG 2000 SDK - 149

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
ECW JPEG 2000 SDK FREE USE LICENSE AGREEMENT
IMPORTANT-READ CAREFULLY: This Earth Resource Mapping Limited ("ERM") End-User
License Agreement ("EULA") is a legal agreement between you (either an individual or a legal
entity) and ERM for the ECW JPEG 2000 SDK software product under this Free Use License
Agreement, which includes computer software and may include associated media, printed
materials, and "online" or electronic documentation ("SOFTWARE PRODUCT"). The
SOFTWARE PRODUCT also includes any updates and supplements to the original SOFTWARE
PRODUCT provided to you by ERM. Any software provided along with the SOFTWARE
PRODUCT that is associated with a separate end-user license agreement is licensed to you under
the terms of that license agreement. By installing, copying, downloading, accessing or otherwise
using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you do
not agree to the terms of this EULA, do not install or use the SOFTWARE PRODUCT.

The intent of this license is to allow unlimited decompression and limited compression (500MB
per image) of ECW JPEG 2000 images within free or commercial applications.

The Software Product is protected by patents, copyright laws and international copyright treaties,
as well as other intellectual property laws and treaties. The Software Product is licensed, not sold.
Rights to use patents, including ERM's large DWT and streaming imagery patents, are given only
for use with the ECW JPEG 2000 SDK and not for other uses.

Granted Rights

1) GRANT OF LICENSE. This EULA grants you the following limited, non-exclusive rights:

a) Software Product. You may install and use the enclosed ECW JPEG 2000 SDK with Unlimited
Decompression and Limited Compression (Less than 500MB) SOFTWARE PRODUCT to
design, develop, and test software application products for use with the Enhanced Compression
Wavelet image technology. Software application products that can be built using this Software
Product come under one or more of the following three (3) types: (1) "Server Software" that
provides services or functionality on a computer acting as a server (and, the computer running the
Server Software shall be referred to as the "Server"); (2) "Client Software" that allows a computer,
workstation, terminal, handheld PC, pager, telephone, "smart phone," or other electronic device
(each of the foregoing a "Device") to access or utilize the services or functionality provided by
Server Software or provide other functionality and; (3) "Software Development Kits" (SDK's)
which are software products similar in intent to this software product.

b) You may install and use an unlimited number of copies of the ECW JPEG 2000 Runtime, which
consists of files contained in the "runtime" directory for use in "Client Software". You may
reproduce and distribute an unlimited number of copies of the ECW JPEG 2000 Runtime for use
in "Client Software"; provided that each copy shall be a true and complete copy, including all
copyright and trademark notices, and that you comply with the Distribution Requirements
described below. You may not use Software Product for development or distribution of "Server
Software".
150 - ECW JPEG 2000 SDK

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
c) Sample Code. You may modify the sample source code located in the SOFTWARE
PRODUCT's "examples" directory ("Sample Code") to design, develop, and test your Application.
You may also reproduce and distribute the Sample Code in object code form along with any
modifications you make to the Sample Code, provided that you comply with the Distribution
Requirements described below

For purposes of this section, "modifications" shall mean enhancements to the functionality of the
Sample Code. You are not permitted to change the ECW JPEG 2000 file format.

2) Distribution Requirements. You may copy and redistribute an unlimited number of copies of
the ECW JPEG 2000 Runtime, and/or Sample Code in object code form (collectively
"REDISTRIBUTABLE COMPONENTS") as described above, provided that (i) you distribute the
REDISTRIBUTABLE COMPONENTS only in conjunction with, and as a part of, your
Application; (ii) your Application adds significant and primary functionality to the
REDISTRIBUTABLE COMPONENTS; (iii) any distribution of the ECW JPEG 2000 Runtime
includes each and every runtime file distributed as a single set; (iv) you do not permit further
redistribution of the REDISTRIBUTABLE COMPONENTS by your end-user customers (v) you
do not use ERM's name, logo, or trademarks to market your Application without prior approval by
ERM in writing; (vi) you include a valid copyright notice on your Application; and (vii) you
indemnify, hold harmless, and defend ERM from and against any claims or lawsuits, including
attorneys' fees, that arise or result from the use or distribution of your Application.

3) COPYRIGHT. All title and intellectual property rights in and to the SOFTWARE PRODUCT
(including but not limited to any images, photographs, animations, video, audio, music, text, and
"applets" incorporated into the SOFTWARE PRODUCT), the accompanying printed materials,
and any copies of the SOFTWARE PRODUCT are owned by ERM or its suppliers. All title and
intellectual property rights in and to the content which may be accessed through use of the
SOFTWARE PRODUCT is the property of the respective content owner and may be protected by
applicable copyright or other intellectual property laws and treaties. This EULA grants you no
rights to use such content. All rights not expressly granted are reserved by ERM.

4) PRERELEASE CODE. The SOFTWARE PRODUCT may contain PRERELEASE CODE that
is not at the level of performance and compatability of the final, generally available, product
offering. These portions of the SOFTWARE PRODUCT may not operate correctly and may be
substantially modified prior to first commercial shipment. ERM is not obligated to make this or
any later version of the SOFTWARE PRODUCT commercially available.

5) SUPPORT SERVICESSupport Services as described here are optional. Licensee may obtain
support from ERM at the prices ruling for full commercial products. Other than this service, ERM
provides no technical support as part of this license.

6) U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PRODUCT and
documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the
US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1)
and (2) of the Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as
applicable. Manufacturer is Earth Resource Mapping Limited.

7) DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.
ECW JPEG 2000 SDK - 151

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
a) Rental. You may not rent, lease or lend the SOFTWARE PRODUCT.

b) Software Transfer. You may permanently transfer all of your rights under this EULA, provided
you retain no copies, you transfer all of the SOFTWARE PRODUCT (including all component
parts, the media and printed materials, any upgrades, this EULA, and, if applicable, the Certificate
of Authenticity), and the recipient agrees to the terms of this EULA. If the SOFTWARE
PRODUCT is an upgrade, any transfer must include all prior versions of the SOFTWARE
PRODUCT.

c) Termination. Without prejudice to any other rights, ERM may terminate this EULA if you fail
to comply with the terms and conditions of this EULA. In such event, you must destroy all copies
of the SOFTWARE PRODUCT and all of its component parts.

d) No Warranties. ERM EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE SOFTWARE
PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION IS
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE
OF THE SOFTWARE PRODUCT REMAINS WITH YOU.

e) Limitation of Liability. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, IN NO EVENT SHALL ERM OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES, EVEN IF ERM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. IN ANY CASE, ERM'S ENTIRE LIABILITY UNDER ANY PROVISION OF
THIS EULA SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID
BY YOU FOR THE SOFTWARE PRODUCT OR US$5.00; PROVIDED HOWEVER, IF YOU
HAVE ENTERED INTO A ERM SUPPORT SERVICES AGREEMENT, ERM'S ENTIRE
LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS
OF THAT AGREEMENT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION
MAY NOT APPLY TO YOU.

f) This Agreement may only be modified in writing signed by authorized representatives of ERM.
All terms of any purchase order or other ordering document shall be superseded by this
Agreement. If any provision of the Agreement is found void or unenforceable, the remainder will
remain valid and enforceable according to its terms. If any remedy provided is determined to have
failed for its essential purpose, all limitations of liability and exclusions of damages set forth in
this Agreement shall remain in effect.

g) This Agreement shall be construed, interpreted and governed by the laws of Western Australia.

h) ERM reserves all rights not specifically granted in this Agreement.
152 - ECW JPEG 2000 SDK

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
ECW JPEG 2000 SDK PUBLIC USE LICENSE AGREEMENT
IMPORTANT-READ CAREFULLY: This Earth Resource Mapping Limited ("ERM") End-User
License Agreement ("EULA") is a legal agreement between you (either an individual or a single
entity) and ERM for the ECW JPEG 2000 SDK software product under this Public Use License
Agreement, which includes computer software and may include associated media, printed
materials, and "online" or electronic documentation ("SOFTWARE PRODUCT"). The
SOFTWARE PRODUCT also includes any updates and supplements to the original SOFTWARE
PRODUCT provided to you by ERM. Any software provided along with the SOFTWARE
PRODUCT that is associated with a separate end-user license agreement is licensed to you under
the terms of that license agreement. By installing, copying, downloading, accessing or otherwise
using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you do
not agree to the terms of this EULA, do not install or use the SOFTWARE PRODUCT.

The intent of this license is to establish freedom to share and change the software regulated by this
license under the open source model and is applicable to the use of the ECW JPEG 2000 SDK
with Unlimited Decompressing and Unlimited Compression for applications licensed under a
GNU General Public style license ("GPL") as set out below.

This license applies to any use of the Software Product solely intended to develop or be distributed
with products that are licensed under a license similar to a General Public License ("GPL") and at
no charge to the public. This license covers modification and distribution of the Software, use of
third-party application programs based on the Software, and development of free software that
uses the Software.

The Software Product is protected by patents, copyright laws and international copyright treaties,
as well as other intellectual property laws and treaties. The Software Product is licensed, not sold.
Rights to use patents, including ERM's large DWT and streaming imagery patents, are given only
for use with the ECW JPEG 2000 SDK and not for other uses.

Granted Rights

1) GRANT OF LICENSE. This EULA grants you the following limited, non-exclusive rights,
provided you agree to and comply with any and all conditions in this license. Whole or partial
distribution of the Software, or software items that link with the Software, in any form signifies
acceptance of this license.

a) You may copy and distribute the Software in unmodified form provided that the entire package,
including - but not restricted to - copyright, trademark notices and disclaimers, as released by the
initial developer of the Software, is distributed.

b) You may make modifications to the Software and distribute your modifications, in a form that is
separate from the Software, such as patches. The following restrictions apply to modifications:

i) Modifications must not alter or remove any copyright notices in the Software.

ii) When modifications to the Software are released under this license, a non-exclusive royalty-
free right is granted to the initial developer of the Software to distribute your modification in
future versions of the Software provided such versions remain available under these terms in
addition to any other license(s) of the initial developer.
ECW JPEG 2000 SDK - 153

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
iii) You are not permitted to change the ECW file format.

iv) You are not permitted to distribute "Server Software" that provides services or functionality on
a computer acting as a server.

c) You may distribute machine-executable forms of the Software or machine-executable forms of
modified versions of the Software, provided that you meet these restrictions:

i) You must include this license document in the distribution.

ii) You must ensure that all recipients of the machine-executable forms are also able to receive the
complete machine-readable source code to the distributed Software, including all modifications,
without any charge beyond the costs of data transfer, and place prominent notices in the
distribution explaining this.

iii) You must ensure that all modifications included in the machine-executable forms are available
under the terms of this license.

d) You may use the original or modified versions of the Software to compile, link and run
application programs legally developed by you or by others.

e) You may develop application programs, reusable components and other software items that link
with the original or modified versions of the Software. These items, when distributed, are subject
to the following requirements:

i) You must ensure that all recipients of machine-executable forms of these items are also able to
receive and use the complete machine-readable source code to the items without any charge
beyond the costs of data transfer.

ii) You must explicitly license all recipients of your items to use and re-distribute original and
modified versions of the items in both machine-executable and source code forms. The recipients
must be able to do so without any charges whatsoever, and they must be able to re-distribute to
anyone they choose.

iii) If the items are not available to the general public, and the initial developer of the Software
requests a copy of the items, then you must supply one.

2) SUPPORT AND UPDATES.

Support Services as described here are optional. Licensee may obtain support from ERM at the
prices ruling for full commercial products. Other than this service, ERM provides no technical
support as part of this license.

3) U.S. GOVERNMENT RESTRICTED RIGHTS.

The SOFTWARE PRODUCT and documentation are provided with RESTRICTED RIGHTS.
Use, duplication, or disclosure by the US Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Earth Resource Mapping Limited.

4) DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.
154 - ECW JPEG 2000 SDK

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
a) Rental. You may not rent, lease or lend the SOFTWARE PRODUCT.

b) Software Transfer. You may permanently transfer all of your rights under this EULA, provided
you retain no copies, you transfer all of the SOFTWARE PRODUCT (including all component
parts, the media and printed materials, any upgrades, this EULA, and, if applicable, the Certificate
of Authenticity), and the recipient agrees to the terms of this EULA. If the SOFTWARE
PRODUCT is an upgrade, any transfer must include all prior versions of the SOFTWARE
PRODUCT.

c) Termination. Without prejudice to any other rights, ERM may terminate this EULA if you fail
to comply with the terms and conditions of this EULA. In such event, you must destroy all copies
of the SOFTWARE PRODUCT and all of its component parts.

d) No Warranties. ERM EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE SOFTWARE
PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION IS
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE
OF THE SOFTWARE PRODUCT REMAINS WITH YOU.

e) Limitation of Liability. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, IN NO EVENT SHALL ERM OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES, EVEN IF ERM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. IN ANY CASE, ERM'S ENTIRE LIABILITY UNDER ANY PROVISION OF
THIS EULA SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID
BY YOU FOR THE SOFTWARE PRODUCT OR US$5.00; PROVIDED HOWEVER, IF YOU
HAVE ENTERED INTO A ERM SUPPORT SERVICES AGREEMENT, ERM'S ENTIRE
LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS
OF THAT AGREEMENT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION
MAY NOT APPLY TO YOU.

f) This Agreement may only be modified in writing signed by authorized representatives of ERM.
All terms of any purchase order or other ordering document shall be superseded by this
Agreement. If any provision of the Agreement is found void or unenforceable, the remainder will
remain valid and enforceable according to its terms. If any remedy provided is determined to have
failed for its essential purpose, all limitations of liability and exclusions of damages set forth in
this Agreement shall remain in effect.

g) This Agreement shall be construed, interpreted and governed by the laws of Western Australia.

h) ERM reserves all rights not specifically granted in this Agreement.
ECW JPEG 2000 SDK - 155

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
ECW JPEG 2000 SDK COMMERCIAL USE LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: This Earth Resorce Mapping Limited ("ERM") End-User
License Agreement ("Agreement") is a legal agreement between you (either an individual or a
legal entity) ("Licensee") and ERM for the ECW JPEG 2000 SDK software product under this
Commercial Use License Agreement, which includes computer software and may include "online"
or electronic documentation, associated media, and printed materials, including the source code,
example programs and the documentation ("Software Product").

By installing, copying, or otherwise using the Software Product, Licensee agrees to be bound by
the terms of this Agreement. If Licensee does not agree to the terms of this Agreement, Licensee
may not install, copy, or otherwise use the Software Product; Licensee may, however, return it to
Licensee's place of purchase for a full refund. In addition, by installing, copying, or otherwise
using any updates or other components of the Software Product that Licensee receives separately
as part of the Software Product ("Updates"), Licensee agrees to be bound by the terms of this
Agreement.

The intent of this license is to establish commercial rights to the use of the ECW JPEG 2000 SDK
with Unlimited Decompressing and Unlimited Compressing.

Licensee agrees to be bound by any additional license terms that accompany such Updates. If
Licensee does not agree to the additional license terms that accompany such Updates, Licensee
may not install, copy, or otherwise use such Updates.

Upon Licensee's acceptance of the terms and conditions of this Agreement, ERM grants Licensee
the right to use the Software Product in the manner provided below.

The Software Product is protected by patents, copyright laws and international copyright treaties,
as well as other intellectual property laws and treaties. The Software Product is licensed, not sold.
Rights to use patents, including ERM's large DWT and streaming imagery patents, are given only
for use with the ECW JPEG 2000 SDK and not for other uses.

Granted Rights

1) GRANT OF LICENSE. This EULA grants you the following limited, non-exclusive rights,
provided you agree to and comply with any and all conditions in this license. Installation of the
Software, whole or partial distribution of the Software, or software items that link with the
Software, in any form signifies acceptance of this license.

a) In return for a one-off License fee (see ERM's current price list), ERM grants to Licensee as an
individual a personal, nonexclusive, non-transferable license to make and use copies of the
Software Product for the sole purposes of designing, developing, and testing Licensee's software
product(s) ("Applications"). Applications are defined as one or more of the following three (3)
types: (1) "Server Software" that provides services or functionality on a computer acting as a
server (and the computer running the Server Software shall be referred to as the "Server"); (2)
"Client Software" that allows a computer, workstation, terminal, handheld PC, pager, telephone,
"smart phone," or other electronic device (each of the foregoing a "Device") to access or utilize the
156 - ECW JPEG 2000 SDK

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
services or functionality provided by Server Software or provide other functionality and; (3)
"Software Development Kits" (SDK's) which are software product similar in intent to this
software product.

b) Licensee may install copies of the Software Product on an unlimited number of computers
provided that Licensee is the only individual using the Software Product. If Licensee is an entity,
ERM grants Licensee the right to designate one, and only one, individual within Licensee's
organization who shall have the sole right to use the Software Product in the manner provided
above. Licensee may at any time, but not more frequently that once every six (6) months,
designate another individual to replace the current designated user by notifying ERM, so long as
there is no more than one designated user at any given time.

c) The Software Product may provide links to third party libraries or code (collectively "Third
Party Libraries") to implement various functions. Third Party Libraries are not prepared by or
owned by ERM, and do not comprise part of the Software Product. In some cases, access to Third
Party Libraries may be included along with the Software Product delivery as a convenience for
development and testing only. Licensee acknowledges (1) that some Third Party Libraries may
require additional licensing of copyright and patents from the owners of such, and (2) that
distribution of any of the Software Product referencing any portion of a Third Party Library may
require appropriate licensing from such third parties and, in the event that such licensing is not
granted, may result in the removal of such Third Party Library from the Software Product.

2) GENERAL TERMS THAT APPLY TO APPLICATIONS AND REDISTRIBUTABLES

ERM grants Licensee a nonexclusive right to reproduce and distribute the ECW JPEG 2000
Runtime and Sample Code as contained in the "examples" directory ("Redistributables") for
execution on any operating System. Copies of Redistributables may only be distributed with and
for the sole purpose of executing Applications permitted under this Agreement that Licensee has
created using the Software Product.

Under no circumstances may any copies of Redistributables be distributed separately.

The license granted in this Agreement for Licensee to create Applications and distribute them and
the Redistributables (if any) to Licensee's customers is subject to all of the following conditions:

a) all copies of the Applications Licensee creates must bear a valid copyright notice, either
Licensee's own or the copyright notice that appears on the Software Product;

b) Licensee may not remove or alter any copyright, trademark or other proprietary rights notice
contained in any portion of the Software Product;

c) Redistributables, if any, shall be licensed to Licensee's customer "as is";

d) Licensee will indemnify and hold ERM, its related companies and its suppliers, harmless from
and against any claims or liabilities arising out of the use, reproduction or distribution of
Applications;

e) The parts of the Applications that are developed using the Software Product must be developed
using a licensed, registered copy of the Software Product;
ECW JPEG 2000 SDK - 157

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
f) If Applications support ECW Viewing/Decompression they must fully support the ECWP
protocol;

g) Licensee is not permitted to change the ECW file format;

h) Applications must add primary and substantial functionality to the Software Product;

i) Applications may not pass on functionality which in any way makes it possible for others to
create software with the Software Product;

i) Applications other than Client Software may not be distributed without the prior agreement of
ERM and will be the subject of a separate licensing agreement. Licensee may not use Software
Product for development or distribution of "Server Software".

j) Licensee may not use ERM's or any of its suppliers' names, logos, or trademarks to market
Application, except to state that Application was developed using the Software Product;

k) Where Redistributables are supplied to a third party as part of client software they must be
statically linked to the NCSECWCU.LIB static link library in the "lib" Directory.

3) SUPPORT AND UPDATES

The License fee includes one year of Support Services. Thereafter, Support Services as described
herein are optional and obtainable from ERM at the prices ruling for full commercial products.

4) U.S. GOVERNMENT RESTRICTED RIGHTS.

The SOFTWARE PRODUCT and documentation are provided with RESTRICTED RIGHTS.
Use, duplication, or disclosure by the US Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Earth Resource Mapping Limited.

5) DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

a) Rental. You may not rent, lease or lend the SOFTWARE PRODUCT.

b) Software Transfer. You may permanently transfer all of your rights under this EULA, provided
you retain no copies, you transfer all of the SOFTWARE PRODUCT (including all component
parts, the media and printed materials, any upgrades, this EULA, and, if applicable, the Certificate
of Authenticity), and the recipient agrees to the terms of this EULA. If the SOFTWARE
PRODUCT is an upgrade, any transfer must include all prior versions of the SOFTWARE
PRODUCT.

c) Termination. Without prejudice to any other rights, ERM may terminate this EULA if you fail
to comply with the terms and conditions of this EULA. In such event, you must destroy all copies
of the SOFTWARE PRODUCT and all of its component parts.

d) No Warranties. ERM EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE SOFTWARE
PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION IS
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
158 - ECW JPEG 2000 SDK

Chapter Appendix A ECW JPEG 2000 SDK License Agreements ● ECW JPEG 2000 SDK
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE
OF THE SOFTWARE PRODUCT REMAINS WITH YOU.

e) Limitation of Liability. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, IN NO EVENT SHALL ERM OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES, EVEN IF ERM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. IN ANY CASE, ERM'S ENTIRE LIABILITY UNDER ANY PROVISION OF
THIS EULA SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID
BY YOU FOR THE SOFTWARE PRODUCT OR US$5.00; PROVIDED HOWEVER, IF YOU
HAVE ENTERED INTO A ERM SUPPORT SERVICES AGREEMENT, ERM'S ENTIRE
LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS
OF THAT AGREEMENT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION
MAY NOT APPLY TO YOU.

f) This Agreement may only be modified in writing signed by authorized representatives of ERM.
All terms of any purchase order or other ordering document shall be superseded by this
Agreement. If any provision of the Agreement is found void or unenforceable, the remainder will
remain valid and enforceable according to its terms. If any remedy provided is determined to have
failed for its essential purpose, all limitations of liability and exclusions of damages set forth in
this Agreement shall remain in effect.

g) This Agreement shall be construed, interpreted and governed by the laws of Western Australia.

h) ERM reserves all rights not specifically granted in this Agreement.

Revised 8th June 2005 - Removed server restriction from GPL License.
ECW JPEG 2000 SDK - 159

	Software Development Kit
	Revision History
	Copyright information
	Service and trademarks
	IP acknowledgements

	Table of Contents
	Introduction
	Intended audience
	What’s new in this version
	JPEG 2000 support
	NITF support
	Compressed multi-terabyte images
	ECWP streaming protocol
	No-hassle licenses
	Open Source

	Upgrading
	Licensing
	License types
	Free use license
	Public use license
	Commercial use license
	Where to get detailed licensing information

	System requirements
	Operating system
	Platforms
	Applications

	Installation

	FAQ
	What is the ECW JPEG 2000 SDK?
	What is JPEG 2000?
	Who is ER Mapper?
	Where can I get the ECW JPEG 2000 SDK?
	What does the ECW JPEG 2000 SDK cost?
	How can I license the ECW JPEG 2000 SDK?
	What is ECW?
	What is ECWP?
	What is ECWPS?
	Must I support ECWP in my application?
	What is GML?
	Does the ECW JPEG 2000 SDK support GeoJP2?
	What is GeoTIFF?
	What is NITF?
	What is streaming imagery?
	Does Image Web Server stream JPEG 2000 images?
	How large an image can I compress with the ECW JPEG 2000 SDK?
	Can I use the ECW JPEG 2000 SDK in 64-bit applications?
	How much can the ECW JPEG 2000 SDK compress a file?
	Which file formats are encoded by the ECW JPEG 2000 SDK?
	What support for bi-level imagery is provided in the ECW JPEG 2000 SDK?
	What is lossless compression?
	What is lossy compression?
	Why do some JPEG 2000 files seem to decompress very slowly?
	What is wavelet compression?
	What is a projection?
	How does the SDK handle decompression functions on the alpha channel?
	How does the SDK handle different sample sizes and component bit depths?
	How does the SDK handle optimal block sizes?
	How does the SDK handle partially georeferenced datasets?
	What is the maximum output bit depth per image component supported by the SDK?

	About image compression
	Lossless or lossy compression
	Wavelet based encoding
	ECW compression
	JPEG 2000 compression
	Support for the NITF standard

	Building from Source
	Building the source
	Third party material
	Organization of the code
	Makefiles and recommended build procedure
	Building the Windows Visual Studio projects
	Visual Studio 6.0 .dsp projects
	Visual Studio 7.1 (.NET 2003) .vcproj projects

	Building using the GNU autotools build structure
	Refreshing the GNU autotools support files
	Other prerequisites

	Building using the Qmake build files
	Qmake build files on Windows
	Qmake build files on platforms other than Windows

	Old build structure on non-Windows platforms

	General notes
	Windows build: Java dependency
	Windows build: WinHTTP dependency
	Windows build: required link line for static builds
	Support for Windows CE
	Source code documentation and info

	Development
	ECW JPEG 2000 SDK contents
	Start menu items

	PC library and include files
	Project settings - Visual C++
	How imagery is accessed
	How to read a view
	The SetFileView concept
	Viewing areas smaller than your application window area
	Requesting odd-aspect views
	Selecting bands from an image file to view

	Blocking reads versus the refresh callback interface
	When to use blocking reads
	When to use refresh reads
	Blocking reads
	Refresh callbacks

	Canceling reads
	Multiple image views and unlimited image size
	Error handling
	Memory management
	Memory usage
	Caching

	Coordinate information
	Transparent proxying
	Delivering your application
	Creating compressed images
	Preserving image quality
	Optimising the compression ratio
	Compressing previously compressed images
	Compressing hyperspectral imagery
	Image size limitations
	Compression directory limitations
	Guidelines for compression
	Enabling unlimited compression

	Examples
	Compression examples
	Compression example 1
	SDK decompression library functions called
	Developer-defined functions called
	Program flow

	Compression example 2
	SDK compression library functions called
	SDK decompression library functions called
	Other SDK library functions called
	Program flow

	Compression example 3
	CNCSFile methods reimplemented by CLosslessCompressor
	Other CNCSFile methods used
	Program flow

	Decompression examples
	Decompression example 1
	SDK decompression library functions called
	Program flow

	Decompression example 2
	SDK decompression library functions called
	Program flow

	Decompression example 3
	CNCSRenderer methods used
	Program flow
	Program

	Decompression example 4
	SDK decompression library functions called
	Program flow

	Example listings

	API reference
	C API: decompression functions
	NCScbmCloseFileView
	NCScbmCloseFileViewEx
	NCScbmGetViewFileInfo
	NCScbmGetViewFileInfoEx
	NCScbmGetViewInfo
	NCScbmOpenFileView
	NCScbmReadViewLineBGR
	NCScbmReadViewLineBGRA
	NCScbmReadViewLineBIL
	NCScbmReadViewLineBILEx
	NCScbmReadViewLineRGB
	NCScbmReadViewLineRGBA
	NCScbmSetFileView
	NCScbmSetFileViewEx
	NCSecwSetConfig
	NCSecwSetIOCallbacks

	Decompression: Related Data Structures
	NCSFileViewFileInfo
	NCSFileViewFileInfoEx
	NCSFileBandInfo
	NCSFileViewSetInfo

	C API: compression functions
	NCSEcwCompressAllocClient
	NCSEcwCompressOpen
	NCSEcwCompress
	NCSEcwCompressClose
	NCSEcwCompressFreeClient

	Compression: developer defined functions
	pCancelCallback
	pReadCallback
	pStatusCallback

	Compression: related data structures
	NCSEcwCompressClient

	Information from the application developer
	C API: Utility Functions
	NCScbmGetFileMimeType
	NCScbmGetFileType
	NCSCopyFileInfoEx
	NCSDetectGDTPath
	NCSFreeFileInfoEx
	NCSGetEPSGCode
	NCSGetGDTPath
	NCSGetProjectionAndDatum
	NCSInitFileInfoEx
	NCSSetGDTPath
	NCSSetJP2GeodataUsage

	C++ API
	Class Reference: CNCSFile
	Construction and destruction
	Constructor:
	Destructor:

	Methods:
	CNCSFile::AddBox
	CNCSFile::BreakdownURL
	CNCSFile::Close
	CNCSFile::ConvertDatasetToWorld
	CNCSFile::ConvertWorldToDataset
	CNCSFile::DetectGDTPath
	CNCSFile::FormatErrorText
	CNCSFile::GetBox
	CNCSFile::GetClientData
	CNCSFile::GetEPSGCode
	CNCSFile::GetEPSGCode
	CNCSFile::GetFile
	CNCSFile::GetFileInfo
	CNCSFile::GetFileMimeType
	CNCSFile::GetFileType
	CNCSFile::GetFileViewSetInfo
	CNCSFile::GetGDTPath
	CNCSFile::GetNCSFileView
	CNCSFile::GetNCSFileView
	CNCSFile::GetPercentComplete
	CNCSFile::GetPercentCompleteTotalBlocksInView
	CNCSFile::GetProjectionAndDatum
	CNCSFile::GetStream
	CNCSFile::GetUUIDBox
	CNCSFile::GetXMLBox
	CNCSFile::Open
	CNCSFile::Open
	CNCSFile::ReadLineABGR
	CNCSFile::ReadLineARGB
	CNCSFile::ReadLineBGR
	CNCSFile::ReadLineBGRA
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineBIL
	CNCSFile::ReadLineRGB
	CNCSFile::ReadLineRGBA
	CNCSFile::RefreshUpdate
	CNCSFile::RefreshUpdateEx
	CNCSFile::SetClientData
	CNCSFile::SetCompressClient
	CNCSFile::SetFileInfo
	CNCSFile::SetGDTPath
	CNCSFile::SetKeySize
	CNCSFile::SetParameter
	CNCSFile::SetParameter
	CNCSFile::SetParameter
	CNCSFile::SetParameter
	CNCSFile::SetRefreshCallback
	CNCSFile::SetView
	CNCSFile::SetView
	CNCSFile::SetView
	CNCSFile::Write
	CNCSFile::WriteCancel
	CNCSFile::WriteLineBIL
	CNCSFile::WriteReadLine
	CNCSFile::WriteStatus

	Class Reference: CNCSRenderer
	Construction and destruction
	Constructor
	Destructor

	Methods:
	CNCSRenderer::ApplyLUTs
	CNCSRenderer::CalcHistograms
	CNCSRenderer::DrawImage
	CNCSRenderer::FreeJPEGBuffer
	CNCSRenderer::GetHistogram
	CNCSRenderer::GetTransparent
	CNCSRenderer::ReadImage
	CNCSRenderer::ReadImage
	CNCSRenderer::ReadImage
	RCNCSRenderer::ReadLineBGR
	CNCSRenderer::ReadLineBIL
	CNCSRenderer::ReadLineRGB
	CNCSRenderer::SetBackgroundColor
	CNCSRenderer::SetTransparent
	CNCSRenderer::WriteJPEG
	CNCSRenderer::WriteJPEG
	CNCSRenderer::WriteWorldFile

	Class Reference: CNCSError
	Construction and destruction
	Constructor
	Destructor

	Methods
	CNCSError::GetErrorMessage
	CNCSError::GetErrorNumber
	CNCSError::Log
	CNCSError::operator=
	CNCSError::operator==
	CNCSError::operator==
	CNCSError::operator!=
	CNCSError::operator!=

	Geocoding information
	Datum
	Projection
	Units
	Registration point
	Geodetic Transform Database
	GDT file formats
	How the ECW JPEG 2000 SDK reads geocoding information
	Embedded Geography Markup Language (GML) metadata
	GML examples

	Embedded “GeoTIFF” metadata
	Supported GeoTIFF tags:
	Supported GeoTIFF GeoKeys:

	Support for “World” files
	Configuring the use of geocoding data for JPEG 2000 files
	EPSG codes

	USA Map Projections
	Directory structure and files
	Subdirectories and files
	The \bin directory
	The \examples directory
	The \include directory
	The \lib directory
	The \redistributable directory
	The \testdata directory
	Other files in the ECW JPEG 2000 SDK

	ECW JPEG 2000 SDK License Agreements
	ECW JPEG 2000 SDK FREE USE LICENSE AGREEMENT
	ECW JPEG 2000 SDK PUBLIC USE LICENSE AGREEMENT
	ECW JPEG 2000 SDK COMMERCIAL USE LICENSE AGREEMENT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

